Soil heavy metal pollution poses a serious threat to environmental safety and human health. Accurately mapping the soil heavy metal distribution is a prerequisite for soil remediation and restoration at contaminated sites. To improve the accuracy of soil heavy metal mapping, this study proposed an error correction-based multi-fidelity technique to adaptively correct the biases of traditional interpolation methods. The inverse distance weighting (IDW) interpolation method was chosen and combined with the proposed technique to form the adaptive multi-fidelity interpolation framework (AMF-IDW). In AMF-IDW, sampled data were first divided into multiple data groups. Then one data group was used to build the low-fidelity interpolation model through IDW, while the other data groups were treated as high-fidelity data and used for adaptively correcting the low-fidelity model. The capability of AMF-IDW to map the soil heavy metal distribution was evaluated in both hypothetical and real-world scenarios. Results showed that AMF-IDW provided more accurate mapping results compared with IDW and the superiority of AMF-IDW became more evident as the number of adaptive corrections increased. Eventually, after using up all data groups, AMF-IDW improved the R values for mapping results of different heavy metals by 12.35-24.32%, and decreased the RMSE values by 30.35%-42.86%, indicating a much higher level of mapping accuracy relative to IDW. The proposed adaptive multi-fidelity technique can be equally combined with other interpolation methods and provide promising potential in improving the soil pollution mapping accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.121827 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!