Artificial intelligence and laboratory data in rheumatic diseases.

Clin Chim Acta

Department of Medicine-DIMED, University of Padova, Padova, Italy; Laboratory Medicine Unit, University Hospital of Padova, Padova, Italy.

Published: June 2023

Artificial intelligence (AI)-based medical technologies are rapidly evolving into actionable solutions for clinical practice. Machine learning (ML) algorithms can process increasing amounts of laboratory data such as gene expression immunophenotyping data and biomarkers. In recent years, the analysis of ML has become particularly useful for the study of complex chronic diseases, such as rheumatic diseases, heterogenous conditions with multiple triggers. Numerous studies have used ML to classify patients and improve diagnosis, to stratify the risk and determine disease subtypes, as well as to discover biomarkers and gene signatures. This review aims to provide examples of ML models for specific rheumatic diseases using laboratory data and some insights into relevant strengths and limitations. A better understanding and future application of these analytical strategies could facilitate the development of precision medicine for rheumatic patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2023.117388DOI Listing

Publication Analysis

Top Keywords

laboratory data
12
rheumatic diseases
12
artificial intelligence
8
intelligence laboratory
4
data
4
rheumatic
4
data rheumatic
4
diseases
4
diseases artificial
4
intelligence ai-based
4

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.

Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

A new vision of the role of the cerebellum in pain processing.

J Neural Transm (Vienna)

January 2025

Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.

The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!