miR-485 regulates Th17 generation and pathogenesis in experimental autoimmune encephalomyelitis through targeting STAT3.

J Neuroimmunol

Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China. Electronic address:

Published: June 2023

Experimental autoimmune encephalomyelitis (EAE) is an induced autoimmune disease widely used as an animal model for multiple sclerosis, which is mainly characterized by demyelination, axonal loss, as well as neurodegeneration of central nervous system (CNS). T-helper (Th) 17 cell that generate interleukin-17 (IL-17) plays a key role in its pathogenesis. Their activity and differentiation are tightly regulated by some cytokines and transcription factors. Certain microRNAs (miRNAs) are involved in the pathogenesis of various autoimmune disorders, including EAE. Our research detected a novel miRNA that can regulate EAE. According to the results, during EAE, the expression of miR-485 notably lowered, and STAT3 was significantly increased. It was discovered that miR-485 knockdown in vivo upregulated Th17-associated cytokines and aggravated EAE, while the overexpressed miR-485 down-regulated Th17-associated cytokines and mitigated EAE. The up-regulation of miRNA-485 in vitro inhibited Th17-associated cytokines expression within EAE CD4+ T cells. Furthermore, as revealed by target prediction and dual-luciferase reporter assays, miR-485 directly targets STAT3, a gene that encodes a protein responsible for Th17 generation. Overall, miR-485 exert vital functions in Th17 generation and EAE pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2023.578100DOI Listing

Publication Analysis

Top Keywords

th17 generation
12
th17-associated cytokines
12
experimental autoimmune
8
autoimmune encephalomyelitis
8
eae
8
mir-485
6
mir-485 regulates
4
regulates th17
4
pathogenesis
4
generation pathogenesis
4

Similar Publications

Background: Acupoint catgut embedding (ACE) is a traditional Chinese medicine technique commonly used for managing various disorders, including chronic inflammatory pain and allergic asthma. Despite its growing use, the neuroimmunological mechanisms underlying ACE treatment effects remain unclear.

Methods: This study investigated the roles and potential mechanisms of the effects of ACE in treating experimental autoimmune encephalomyelitis (EAE), a frequently used animal model of autoimmune neuroinflammation.

View Article and Find Full Text PDF

Dysregulated differentiation of naïve CD4+ T cells into T helper 17 (Th17) cells is likely a key factor predisposing to many autoimmune diseases. Therefore, better understanding how Th17 differentiation is regulated is essential to identify novel therapeutic targets and strategies to identify individuals at high risk of developing autoimmunity. Here, we extend our prior work using chemical inhibitors to provide mechanistic insight into a novel regulator of Th17 differentiation, the kinase dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A).

View Article and Find Full Text PDF

Cardiovascular diseases remain a significant reason for illness and death globally. Although certain interleukins have been extensively researched about cardiovascular disease (CVD), new findings have identified unique members of the interleukin family that could potentially play a role in cardiovascular well-being and ailments. This review discusses the current understanding of the role of these recently identified interleukins, such as IL-27, IL-31, IL-32, IL-33, and the IL-28 group (IL-28A, IL-28B, IL-29), in the development of cardiovascular diseases.

View Article and Find Full Text PDF

Background And Aim: Ulcerative colitis (UC) is characterized by complex immunological interactions involving CD4 T cell subsets and the NLRP3 inflammasome, which influence inflammatory responses. This investigation focused on delineating the activation profiles of these components and their correlation with disease severity and activity, assessing their diagnostic implications in UC.

Methods: We conducted immunohistochemistry and ELISA assays to measure markers expression of CD4 T cell subsets and the NLRP3 inflammasome in UC patients versus controls.

View Article and Find Full Text PDF

The regulatory network that controls lymphopoiesis.

Biosystems

January 2025

Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/n, Ciudad Universitaria, 04510, CdMx, México.

Lymphopoiesis is the generation of the T, B and NK cell lineages from a common lymphoid-biased haematopoietic stem cell. The experimental study of this process has generated a large amount of cellular and molecular data. As a result, there is a considerable number of mathematical and computational models regarding different aspects of lymphopoiesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!