Aliphatic polyesters are intrinsically enzymatic-biodegradable, and there is ever-increasing demand for safe and smart next-generation biomaterials including drug delivery nano-vectors in cancer research. Using bioresource-based biodegradable polyesters is one of the elegant strategies to meet this requirement; here, we report an l-amino acid-based amide-functionalized polyester platform and explore their lysosomal enzymatic biodegradation aspects to administrate anticancer drugs in cancer cells. l-Aspartic acid was chosen and different amide-side chain-functionalized di-ester monomers were tailor-made having aromatic, aliphatic, and bio-source pendant units. Under solvent-free melt polycondensation methodology; these monomers underwent polymerization to yield high molecular weight polyesters with tunable thermal properties. PEGylated l-aspartic monomer was designed to make thermo-responsive amphiphilic polyesters. This amphiphilic polyester was self-assembled into a 140 ± 10 nm-sized spherical nanoparticle in aqueous medium, which exhibited lower critical solution temperature at 40-42 °C. The polyester nano-assemblies showed excellent encapsulation capabilities for anticancer drug doxorubicin (DOX), anti-inflammatory drug curcumin, biomarkers such as rose bengal (RB), and 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt. The amphiphilic polyester NP was found to be very stable under extracellular conditions and underwent degradation upon exposure to horse liver esterase enzyme in phosphate-buffered saline at 37 °C to release 90% of the loaded cargoes. Cytotoxicity studies in breast cancer MCF 7 and wild-type mouse embryonic fibroblasts cell lines revealed that the amphiphilic polyester was non-toxic to cell lines up to 100 μg/mL, while their drug-loaded polyester nanoparticles were able to inhibit the cancerous cell growth. Temperature-dependent cellular uptake studies further confirmed the energy-dependent endocytosis of polymer NPs across the cellular membranes. Confocal laser scanning microscopy assisted time-dependent cellular uptake analysis directly evident for the endocytosis of DOX loaded polymer NP and their internalization for biodegradation. In a nutshell, the present investigation opens up an avenue for the l-amino acid-based biodegradable polyesters from l-aspartic acids, and the proof of concept is demonstrated for drug delivery in the cancer cell line.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.3c00127DOI Listing

Publication Analysis

Top Keywords

amphiphilic polyester
16
drug delivery
12
melt polycondensation
8
l-aspartic acid
8
polyester nano-assemblies
8
delivery cancer
8
cancer cells
8
biodegradable polyesters
8
l-amino acid-based
8
cell lines
8

Similar Publications

A β-cyclodextrin-based supramolecular modular system creating micellar carriers for codelivery of doxorubicin and siRNA for potential combined chemotherapy and immunotherapy.

Carbohydr Polym

March 2025

Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore. Electronic address:

The combination of chemotherapy and gene therapy holds promise in treating cancer. A key strategy is to use small interfering RNAs (siRNAs) to silence programmed death-ligand 1 (PD-L1) expression in cancer cells, disrupting tumor immune evasion and enhancing anticancer treatments, particularly when used in conjunction with chemotherapy drugs such as doxorubicin (Dox). However, effective codelivery of drugs and genes requires carefully designed carriers and complex synthesis procedures.

View Article and Find Full Text PDF

Biodegradable Polymeric Microspheres with Enhanced Hemostatic and Antibacterial Properties for Wound Healing.

Biomacromolecules

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.

Hemostasis is the initial step in wound healing, yet significant challenges, such as massive bleeding and infection, often arise. In this study, we developed amphiphilic biodegradable polyester-based segmented polyurethane (SPU) microspheres modified with epigallocatechin gallate (EGCG)-Ag nanoparticles and calcium-alginate cross-linking shell, combining blood absorption with the pro-coagulation properties of Ca and the negative charge of EGCG for synergistic hemostatic effects across various stages of the coagulation cascade. The in vitro blood clotting time of the SPU@EAg@CaAlg microsphere (328.

View Article and Find Full Text PDF

Visible Light-Responsive Composition-Dependent Morphology and Cargo Release in Mixed Micelles of Dendron Amphiphiles.

Langmuir

January 2025

Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

2,2-Bis-(methylol)propionic acid-based second-generation polyester dendron amphiphile (T-D) containing visible light-responsive donor-acceptor Stenhouse adduct (DASA) as hydrophobic tails is synthesized. Micelles of T-D amphiphile and its mixed micelles of varying compositions with nonresponsive dendron amphiphile containing lauryl groups are prepared in aqueous solution. In transmission electron microscopy and atomic force microscopy analyses, T-D amphiphiles show rice grain-like ellipsoidal micelles as the predominant morphology.

View Article and Find Full Text PDF

Gold nanoparticles (GNPs) encapsulated in amphiphilic block copolymers are a promising system for numerous biomedical applications, although critical information on the effects of various preparation variables on the structure and properties of this unique type of nanomaterial is currently missing from the literature. In this research, we synthesized GNPs functionalized with thiol-terminated polycaprolactone (PCL-GNPs) before encapsulating them into poly(ε-caprolactone)--poly(ethylene glycol) (PCL--PEG) micellar nanoparticles via nanoprecipitation to yield GNP-loaded polymeric nanoparticles (GNP-PNPs). We explored the role of different manufacturing variables (water volume, PCL--PEG to PCL-GNP ratio, and PEG block length) on the sizes, morphologies, GNP occupancies, colloidal gold concentrations, and time stability of GNP-PNPs.

View Article and Find Full Text PDF

The capacity to tune the degree of mucoadhesion and mucopenetration of nanoparticles is essential to improving drug bioavailability, transport, and efficacy at mucosal interfaces. Herein, self-assembled nanoparticles (NPs) fabricated from amphiphilic block copolymers of poly(lactic acid) (PLA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA) with various side chain lengths (PLA-POEGMA) are reported to facilitate tunable mucosal interactions. PLA-POEGMA nanoparticles with long PEG side chain lengths ( = 20, or 40) demonstrated mucoadhesive properties based on rheological synergism, calorimetric tracking of mucin-nanoparticle interactions, and the formation of larger NP-mucin hybrid structures; in contrast, NPs fabricated from block copolymers with shorter PEG side chains ( = 2/8-9 or = 8,9) showed poor mucoadhesion but penetrated through the mucin layer with significantly higher permeation rates (>80%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!