The novel Cr(VI) anion-imprinted polymer (Cr(VI)-IIP) was prepared by a surface imprinting technique with bifunctional monomers pre-assembly system based on mesoporous silicon (SBA-15). The synthesized Cr(VI)-IIP was characterized by Fourier transmission infrared spectra (FT-IR), energy dispersive spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffractometer, N adsorption-desorption and thermogravimetric analysis (TGA), proving to be with a highly ordered mesoporous structure, as well as favorable thermal stability. The saturated adsorption amount was 96.32 mg/g, which was 2.7 times higher than that of non-imprinted polymer (NIP). Kinetic experiments showed that the adsorption equilibrium state was obtained within 70 min. In addition, in the selectivity experiments, Cr(VI)-IIP exhibited strong specific recognition ability for Cr(VI) and could realize the separation of Cr(VI) and Cr(III) from an aqueous solution. The dynamic adsorption experiments exhibited that the dynamic adsorption efficiency of Cr(VI)-IIP was as high as 71.57%. Meanwhile, the dynamic regeneration experiments showed that the adsorption amount of Cr(VI)-IIP did not decrease significantly after repeating for five times. All of the findings suggested that Cr(VI)-IIP could achieve precise identification as well as efficient separation of Cr(VI) from aqueous solution.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2023.127DOI Listing

Publication Analysis

Top Keywords

separation crvi
12
aqueous solution
12
crvi anion-imprinted
8
anion-imprinted polymer
8
mesoporous silicon
8
bifunctional monomers
8
precise identification
8
crvi aqueous
8
electron microscope
8
adsorption amount
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!