Membrane-spanning nanopores are used in label-free single-molecule sensing and next-generation portable nucleic acid sequencing, and as powerful research tools in biology, biophysics, and synthetic biology. Naturally occurring protein and peptide pores, as well as synthetic inorganic nanopores, are used in these applications, with their limitations. The structural and functional repertoire of nanopores can be considerably expanded by functionalising existing pores with DNA strands and by creating an entirely new class of nanopores with DNA nanotechnology. This review outlines progress in this area of functional DNA nanopores and outlines developments to open up new applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202303103 | DOI Listing |
BMC Infect Dis
December 2024
Xi'an Chest Hospital, Xi'an, Shaanxi Province, China.
Objectives: This study evaluates the effectiveness of nanopore sequencing for accurate detection of Mycobacterium tuberculosis pathogens and drug resistance mutations in clinical specimens.
Methods: A retrospective analysis of 2,421 specimens from suspected tuberculosis patients admitted to Xi'an Chest Hospital from 2022 to 2023 was conducted, with 131 specimens undergoing via real-time, fluorescence-based quantitative Polymerase Chain Reaction (qPCR), simultaneous amplification and testing RNA (RNA), Mycobacterium culture, Mycobacterium smear, and nanopore sequencing. Employing clinical tuberculosis diagnoses as the gold standard, sensitivity, specificity, positive predictive value, negative predictive value, concordance rate, and Kappa coefficient were measured for the five detection techniques.
Vet Sci
November 2024
College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
The duck industry is vital for supplying high-quality protein, making research into the development of duck skeletal muscle critical for improving meat and egg production. In this study, we leveraged Oxford Nanopore Technologies (ONT) sequencing to perform full-length transcriptome sequencing of myoblasts harvested from the leg muscles of duck embryos at embryonic day 13 (E13), specifically examining both the proliferative (GM) and differentiation (DM) phases. Our analysis identified a total of 5797 novel transcripts along with 2332 long non-coding RNAs (lncRNAs), revealing substantial changes in gene expression linked to muscle development.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
is a pathogenic fungus that infects flax and causes significant yield losses. In this study, we assembled the genomes of four highly virulent strains using the Oxford Nanopore Technologies (ONT, R10.4.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia.
Nanopipettes, as a class of solid-state nanopores, have evolved into universal tools in biomedicine for the detection of biomarkers and different biological analytes. Nanopipette-based methods combine high sensitivity, selectivity, single-molecule resolution, and multifunctionality. The features have significantly expanded interest in their applications for the biomolecular detection, imaging, and molecular diagnostics of real samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!