Paracellular permeability and tight junction regulation in gut health and disease.

Nat Rev Gastroenterol Hepatol

Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Published: July 2023

Epithelial tight junctions define the paracellular permeability of the intestinal barrier. Molecules can cross the tight junctions via two distinct size-selective and charge-selective paracellular pathways: the pore pathway and the leak pathway. These can be distinguished by their selectivities and differential regulation by immune cells. However, permeability increases measured in most studies are secondary to epithelial damage, which allows non-selective flux via the unrestricted pathway. Restoration of increased unrestricted pathway permeability requires mucosal healing. By contrast, tight junction barrier loss can be reversed by targeted interventions. Specific approaches are needed to restore pore pathway or leak pathway permeability increases. Recent studies have used preclinical disease models to demonstrate the potential of pore pathway or leak pathway barrier restoration in disease. In this Review, we focus on the two paracellular flux pathways that are dependent on the tight junction. We discuss the latest evidence that highlights tight junction components, structures and regulatory mechanisms, their impact on gut health and disease, and opportunities for therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127193PMC
http://dx.doi.org/10.1038/s41575-023-00766-3DOI Listing

Publication Analysis

Top Keywords

tight junction
16
pore pathway
12
pathway leak
12
leak pathway
12
paracellular permeability
8
gut health
8
health disease
8
tight junctions
8
pathway
8
permeability increases
8

Similar Publications

Formation of epithelial polarity on the fluorinated-oil microdroplet surface by regulating cell adhesion.

J Biosci Bioeng

January 2025

Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Polarized epithelial cells are compartmentalized into apical and basement membranes with asymmetrically distributed proteins. This study aimed to establish a method for culturing epithelial cells at the fluorinated oil (Novec-7500) microdroplet surface for the formation of epithelial polarity, which is desirable for regenerative medicine and drug discovery research. Microdroplet surfaces treated with fibronectin, which regulates a variety of cell behaviors through direct interactions with cell surface integrin receptors, were prepared for culturing epithelial cells.

View Article and Find Full Text PDF

Destructive and Protective Effects and Therapeutic Targets of IL-36 Family Cytokines in Dry Eye Disease.

Ocul Surf

January 2025

Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030 United States. Electronic address:

Purpose: To explore the destructive and protective effects and therapeutic targets of IL-36 cytokines in dry eye disease using a murine dry eye model.

Methods: A dry eye model was established in C57BL/6 mice exposed to desiccating stress (DS) with untreated mice as controls. A topical challenge model was performed in normal mice with exogenous rmIL-36α, rhIL-38 and 2% ectoine, or PBS vehicle.

View Article and Find Full Text PDF

Y-27632 and dual media culture approach promote the construction and transplantation of rabbit limbal epithelial cell sheets via cell spheroid culture and auto-bioprinting.

Acta Biomater

January 2025

Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China. Electronic address:

The shortage of corneal donors and the limitations in tissue engineering grafts, such as biocompatibility and mechanical properties, pose significant challenges in corneal transplantation. Here, for the first time, we investigate the effect of Rho kinase inhibitor Y-27632 and a dual media culture approach, including proliferative media (M1) and stabilizing media (M2), on rabbit limbal epithelial stem cells (LESCs), aiming to explore the feasibility of constructing corneal cell sheets in vitro through auto-bioprinting and assessing their corneal wound healing capacity in vivo. Y-27632 has primarily demonstrated significantly enhanced LESCs growth, proliferation, and reduced apoptosis.

View Article and Find Full Text PDF

Trichinella spiralis (T. spiralis) is a highly pathogenic zoonotic nematode that poses significant public health risks and causes substantial economic losses. Understanding its invasion mechanisms is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!