Single-cell RNA-seq analysis has become a powerful tool to analyse the transcriptomes of individual cells. In turn, it has fostered the possibility of screening thousands of single cells in parallel. Thus, contrary to the traditional bulk measurements that only paint a macroscopic picture, gene measurements at the cell level aid researchers in studying different tissues and organs at various stages. However, accurate clustering methods for such high-dimensional data remain exiguous and a persistent challenge in this domain. Of late, several methods and techniques have been promulgated to address this issue. In this article, we propose a novel framework for clustering large-scale single-cell data and subsequently identifying the rare-cell sub-populations. To handle such sparse, high-dimensional data, we leverage PaCMAP (Pairwise Controlled Manifold Approximation), a feature extraction algorithm that preserves both the local and the global structures of the data and Gaussian Mixture Model to cluster single-cell data. Subsequently, we exploit Edited Nearest Neighbours sampling and Isolation Forest/One-class Support Vector Machine to identify rare-cell sub-populations. The performance of the proposed method is validated using the publicly available datasets with varying degrees of cell types and rare-cell sub-populations. On several benchmark datasets, the proposed method outperforms the existing state-of-the-art methods. The proposed method successfully identifies cell types that constitute populations ranging from 0.1 to 8% with F1-scores of 0.91 0.09. The source code is available at https://github.com/scrab017/RarPG.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbad125DOI Listing

Publication Analysis

Top Keywords

rare-cell sub-populations
12
proposed method
12
high-dimensional data
8
single-cell data
8
data subsequently
8
cell types
8
data
6
scalable unsupervised
4
unsupervised learning
4
learning scrnaseq
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!