Magnetoelectricity enables a solid-state material to generate electricity under magnetic fields. Most magnetoelectric composites are developed through a strain-mediated route by coupling piezoelectric and magnetostrictive phases. However, the limited availability of high-performance magnetostrictive components has become a constraint for the development of novel magnetoelectric materials. Here, we demonstrate that nanostructured composites of magnetic and pyroelectric materials can generate electrical output, a phenomenon we refer to as the magnetopyroelectric (MPE) effect, which is analogous to the magnetoelectric effect in strain-mediated composite multiferroics. Our composite consists of magnetic iron oxide nanoparticles (IONPs) dispersed in a ferroelectric (and also pyroelectric) poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) matrix. Under a high-frequency low-magnitude alternating magnetic field, the IONPs generate heat through hysteresis loss, which stimulates the depolarization process of the pyroelectric polymer. This magnetopyroelectric approach creates a new opportunity to develop magnetoelectric materials for a wide range of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317111PMC
http://dx.doi.org/10.1039/d2mh01361dDOI Listing

Publication Analysis

Top Keywords

magnetoelectric materials
8
magnetic
5
magnetopyroelectric heat-mediated
4
heat-mediated magnetoelectricity
4
magnetoelectricity magnetic
4
magnetic nanoparticle-ferroelectric
4
nanoparticle-ferroelectric polymer
4
polymer composites
4
composites magnetoelectricity
4
magnetoelectricity enables
4

Similar Publications

Magnetic Domain Wall Energy Landscape Engineering in a Ferrimagnet.

Nano Lett

December 2024

Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, 300350 Tianjin, China.

Architectures based on a magnetic domain wall (DW) can store and process information at a high speed in a nonvolatile manner with ultra-low power consumption. Recently, transition-metal rare earth metal alloy-based ferrimagnets have attracted a considerable amount of attention for the ultrafast current-driven DW motion. However, the high-speed DW motion is subject to film inhomogeneity and device edge defects, causing challenges in controlling the DW motion and hindering practical application.

View Article and Find Full Text PDF

Artificial Control of Giant Converse Magnetoelectric Effect in Spintronic Multiferroic Heterostructure.

Adv Sci (Weinh)

December 2024

Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.

To develop voltage-controlled magnetization switching technologies for spintronics applications, a highly (422)-oriented CoFeSi layer on top of the piezoelectric PMN-PT(011) is experimentally demonstrated by inserting a vanadium (V) ultra-thin layer. The strength of the growth-induced magnetic anisotropy of the (422)-oriented CoFeSi layers can be artificially controlled by tuning the thicknesses of the inserted V and the grown CoFeSi layers. As a result, a giant converse magnetoelectric effect (over 10 s m) and a non-volatile binary state at zero electric field are simultaneously achieved in the (422)-oriented CoFeSi/V/PMN-PT(011) multiferroic heterostructure.

View Article and Find Full Text PDF

Memristors and magnetic tunnel junctions are showing great potential in data storage and computing applications. A magnetoelectrically coupled memristor utilizing electron spin and electric field-induced ion migration can facilitate their operation, uncover new phenomena, and expand applications. In this study, devices consisting of Pt/(LaCoO/SrTiO)/LaCoO/Nb:SrTiO (Pt/(LCO/STO)/LCO/NSTO) are engineered using pulsed laser deposition to form the LCO/STO superlattice layer, with Pt and NSTO serving as the top and bottom electrodes, respectively.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) show great promise for microwave absorption (MA) due to their excellent electrical conductivity and lightweight properties, which are conferred by the one dimensional hollow tubular structure. However, the ambiguous intrinsic motivations behind the formation of CNTs and the intricate growth processes have resulted in a lack of a systematic methodology for precisely controlling their electromagnetic properties. Herein, a flexible CNTs regulation strategy is designed to develop, with the core focus being the directional growth of carbon atoms and the differential catalysis of metal sources.

View Article and Find Full Text PDF

Manipulating Magnetic Damping of Fe/GeTe Heterostructures by Band Engineering.

Adv Sci (Weinh)

December 2024

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.

Understanding and manipulating magnetic damping, particularly in magnetic heterostructures, is crucial for fundamental research, versatile engineering, and optimization. Although magnetic damping can be enhanced by the band hybridization between ferromagnetic and nonmagnetic materials at the interface, the contribution of individual subbands on the hybridized bands to magnetic damping is fully unexplored. Here, it is found that magnetic damping α is modified by the Fermi level in Fe/GeTe heterostructures via Bi doping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!