Minichromosome maintenance complex component 6 (MCM6), a member of the MCM family, plays a pivotal role in DNA replication initiation and genome duplication of proliferating cells. MCM6 is upregulated in multiple malignancies and is considered a novel diagnostic biomarker. However, the functional contributions and prognostic value of MCM6 in intrahepatic cholangiocarcinoma (ICC) remain unexplored. In this study, we investigated the molecular function of MCM6 in ICC. Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO, GSE107943) indicated an upregulation of MCM6 in tumor tissues. Immunohistochemical analysis performed on 115 cases of ICC samples confirmed the upregulation of MCM6 and further suggested that a high level of MCM6 expression predicted shorter overall and disease-free survival in ICC patients. Functional studies suggested that MCM6 knockdown significantly suppressed cell viability, blocked cell cycle progression and inhibited metastasis, while the enhancement of MCM6 expression promoted the proliferation and migration of ICC cells both in vitro and in vivo. Mechanistically, Gene Set Enrichment Analysis (GSEA) suggested that the epithelial-mesenchymal transition (EMT) and E2F1-correlated genes were enriched in ICC tissues with high MCM6 expression. Further verification indicated that MCM6 promoted the EMT of ICC cells via upregulating E2F1. In addition, E2F1 knockdown partially blocked the pro-malignant effects of MCM6 overexpression. In summary, MCM6 was found to be a novel prognostic and predictive marker for ICC. MCM6 promoted ICC progression via activation of E2F1-mediated EMT.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgad023DOI Listing

Publication Analysis

Top Keywords

mcm6
15
mcm6 expression
12
icc
9
intrahepatic cholangiocarcinoma
8
upregulating e2f1
8
epithelial-mesenchymal transition
8
upregulation mcm6
8
icc cells
8
mcm6 promoted
8
mcm6 promotes
4

Similar Publications

Establishment and characterization of a new mouse gastric carcinoma cell line, MCC.

Cancer Cell Int

January 2025

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, People's Republic of China.

Background: The aim of this study was to establish a primary mouse gastric carcinoma cell line.

Methods: Gastric adenocarcinoma in the body region was induced in immunocompetent BALB/c mice using N-Methyl-N-nitrosourea and a 2% NaCl solution. Fresh gastric cancer tissue samples were cultured in 1640 medium supplemented with 10% fetal bovine serum for primary culture and subculture.

View Article and Find Full Text PDF

Background/objectives: Nucleolin is a major component of the nucleolus and is involved in various aspects of ribosome biogenesis. However, it is also implicated in non-nucleolar functions such as cell cycle regulation and proliferation, linking it to various pathologic processes. The aim of this study was to use differential gene expression analysis and Weighted Gene Co-expression Network analysis (WGCNA) to identify nucleolin-related regulatory pathways and possible key genes as novel therapeutic targets for cancer, viral infections and other diseases.

View Article and Find Full Text PDF

Cancer, a leading cause of death worldwide, is projected to increase by 76.6% in new cases and 89.7% in mortality by 2050 (WHO 2022).

View Article and Find Full Text PDF

Avermectin B1a, a widely used pesticide, has recently raised safety concerns since it possesses potential cytotoxicity toward mammalian cells. Nevertheless, the exact mechanisms that underlie the cytotoxicity induced by avermectin B1a remain elusive. The loading of the mini-chromosome maintenance 6 protein (MCM6) onto chromatin at replication origins by chromatin licensing and DNA replication factor 1 (CDT1) is an essential step for licensing DNA for replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!