Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oral squamous cell carcinoma (OSCC) escape from the immune system is mediated through several immunosuppressive phenotypes that are critical to the initiation and progression of tumors. As a hallmark of cancer, DNA damage repair is closely related to changes in the immunophenotypes of tumor cells. Although flap endonuclease-1 (FEN1), a pivotal DNA-related enzyme is involved in DNA base excision repair to maintain the stability of the cell genome, the correlation between FEN1 and tumor immunity has been unexplored. In the current study, by analyzing the clinicopathological characteristics of FEN1, we demonstrated that FEN1 overexpressed and that an inhibitory immune microenvironment was established in OSCC. In addition, we found that downregulating FEN1 inhibited the growth of OSCC tumors. In vitro studies provided evidence that FEN1 knockdown inhibited the biological behaviors of OSCC and caused DNA damage. Performing multiplex immunohistochemistry (mIHC), we directly observed that the acquisition of critical immunosuppressive phenotypes was correlated with the expression of FEN1. More importantly, FEN1 directly or indirectly regulated two typical immunosuppressive phenotype-related proteins human leukocyte antigen (HLA-DR) and programmed death receptor ligand 1 (PD-L1), through the interferon-gamma (IFN-γ)/janus kinase (JAK)/signal transducer and activator transcription 1 (STAT1) pathway. Our study highlights a new perspective on FEN1 action for the first time, providing theoretical evidence that it may be a potential immunotherapy target for OSCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130046 | PMC |
http://dx.doi.org/10.1038/s41368-023-00221-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!