Spatial patterns of genetic variation compared across species provide information about the predictability of genetic diversity in natural populations, and areas requiring conservation measures. Due to their remarkable fish diversity, rivers in Neotropical regions are ideal systems to confront theory with observations and would benefit greatly from such approaches given their increasing vulnerability to anthropogenic pressures. We used SNP data from 18 fish species with contrasting life-history traits, co-sampled across 12 sites in the Maroni- a major river system from the Guiana Shield -, to compare patterns of intraspecific genetic variation and identify their underlying drivers. Analyses of covariance revealed a decrease in genetic diversity as distance from the river outlet increased for 5 of the 18 species, illustrating a pattern commonly observed in riverscapes for species with low-to-medium dispersal abilities. However, the mean within-site genetic diversity was lowest in the two easternmost tributaries of the Upper Maroni and around an urbanized location downstream, indicating the need to address the potential influence of local pressures in these areas, such as gold mining or fishing. Finally, the relative influence of isolation by stream distance, isolation by discontinuous river flow, and isolation by spatial heterogeneity in effective size on pairwise genetic differentiation varied across species. Species with similar dispersal and reproductive guilds did not necessarily display shared patterns of population structure. Increasing the knowledge of specific life history traits and ecological requirements of fish species in these remote areas should help further understand factors that influence their current patterns of genetic variation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313816PMC
http://dx.doi.org/10.1038/s41437-023-00616-7DOI Listing

Publication Analysis

Top Keywords

genetic variation
16
genetic diversity
12
patterns intraspecific
8
genetic
8
intraspecific genetic
8
patterns genetic
8
fish species
8
species
7
patterns
5
contrasts riverscape
4

Similar Publications

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

Deep conservation complemented by novelty and innovation in the insect eye ground plan.

Proc Natl Acad Sci U S A

January 2025

Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.

A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!