AI Article Synopsis

  • Methanol oxidation is key for clean energy, especially in direct methanol fuel cells, but creating efficient and affordable catalysts for this process is a major hurdle.
  • Researchers have developed a NiSn catalyst that shows excellent electrocatalytic activity and stability in acidic conditions, rivaling commercial Pt/C catalysts.
  • This new catalyst, made from abundant metals Ni and Sn, is 1800 times cheaper than Pt/C and retains its performance even under challenging environments, supported by density functional theory modeling that explains its favorable reaction mechanisms.

Article Abstract

Methanol (CHOH) oxidation offers a promising avenue for transitioning to clean energy, particularly in the field of direct methanol fuel cells (DMFCs). However, the development of efficient and cost-effective catalysts for the methanol oxidation reaction (MOR) remains a critical challenge. Herein, we report the exceptional electrocatalytic activity and stability of NiSn toward MOR in acidic media, achieving a performance comparable to that of commercial Pt/C catalysts. Our catalyst design incorporates Earth-abundant Ni and Sn elements, resulting in a material that is 1800 times more cost-effective than Pt/C. Density functional theory (DFT) modeling substantiates our experimental findings, shedding light on the favorable reaction mechanisms and kinetics on the NiSn surface. Additionally, the as-synthesized NiSn electrocatalyst demonstrates commendable durability, maintaining its electrocatalytic activity even after prolonged exposure to harsh acidic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cc01623dDOI Listing

Publication Analysis

Top Keywords

methanol oxidation
8
oxidation reaction
8
electrocatalytic activity
8
cost-effective high-performance
4
nisn
4
high-performance nisn
4
nisn electrocatalysts
4
methanol
4
electrocatalysts methanol
4
reaction acidic
4

Similar Publications

In this study, a new reversed phase high performance liquid chromatography method using two detectors was developed for the analysis of degradation and process impurities of ivabradine in pharmaceutical preparations. A PDA detector set to 285 nm wavelength and a QDa detector set to positive scan mode were used in the method. In the developed method, the separation process was carried out in a Zorbax phenyl column with a gradient application of a 0.

View Article and Find Full Text PDF

Semiconductor metal oxide gas sensors are widely used to detect ethanol vapours, commonly used in industrial productions, road safety detection, and solvent production; however, they operate at extremely high temperatures. In this work, we present manganese dioxide nanorods (MnO NRs) prepared via hydrothermal synthetic route, carbon soot (CNPs) prepared via pyrolysis of lighthouse candle, and poly-4-vinylpyridine (P4VP) composite for the detection of ethanol vapour at room temperature. MnO, CNPs, P4VP, and MnO NRs-CNPs-P4VP composite were characterised using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy.

View Article and Find Full Text PDF

Electrocatalytic methane conversion via in-situ generated superoxide radicals in an aprotic ionic liquid.

J Colloid Interface Sci

January 2025

Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China. Electronic address:

The electrochemical activation and partial oxidation of methane are highly attractive to enable the direct conversion in a sustainable and decentralized way. Herein, we report an electrochemical system in a non-diaphragm electrochemical bath to convert CH to CHOH and CHCHOH at room temperature, in which VO·HO as the anodic catalyst to activate CH and an aprotic ionic liquid [BMIM]BF as supporting electrolyte to control superoxide radicals (O) as the main active oxygen species generated on cathode. As a result, methanol and ethanol were identified as the liquid products, and the superior methanol Faraday efficiency (FE) of 32.

View Article and Find Full Text PDF

Plants constitute a source of natural phytochemical components which are widely known for their potential biological activities. This work concerned a study of the antioxidant, anticancer and anti-inflammatory activities of squirting cucumber (Ecballium elaterium L.) parts (flowers, fruits, leaves and stems) using different solvent extracts (cyclohexane, dichloromethane, ethyl acetate, methanol and water).

View Article and Find Full Text PDF

Efficient amine-assisted CO hydrogenation to methanol co-catalyzed by metallic and oxidized sites within ruthenium clusters.

Nat Commun

January 2025

Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.

Amine-assisted two-step CO hydrogenation is an efficient route for methanol production. To maximize the overall catalytic performance, both the N-formylation of amine with CO (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!