A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Feasibility of Bone Mineral Density and Bone Microarchitecture Assessment Using Deep Learning With a Convolutional Neural Network. | LitMetric

Objectives: We evaluated the feasibility of using deep learning with a convolutional neural network for predicting bone mineral density (BMD) and bone microarchitecture from conventional computed tomography (CT) images acquired by multivendor scanners.

Methods: We enrolled 402 patients who underwent noncontrast CT examinations, including L1-L4 vertebrae, and dual-energy x-ray absorptiometry (DXA) examination. Among these, 280 patients (3360 sagittal vertebral images), 70 patients (280 sagittal vertebral images), and 52 patients (208 sagittal vertebral images) were assigned to the training data set for deep learning model development, the validation, and the test data set, respectively. Bone mineral density and the trabecular bone score (TBS), an index of bone microarchitecture, were assessed by DXA. BMDDL and TBSDL were predicted by deep learning with a convolutional neural network (ResNet50). Pearson correlation tests assessed the correlation between BMDDL and BMD, and TBSDL and TBS. The diagnostic performance of BMDDL for osteopenia/osteoporosis and that of TBSDL for bone microarchitecture impairment were evaluated using receiver operating characteristic curve analysis.

Results: BMDDL and BMD correlated strongly (r = 0.81, P < 0.01), whereas TBSDL and TBS correlated moderately (r = 0.54, P < 0.01). The sensitivity and specificity of BMDDL for identifying osteopenia or osteoporosis were 93% and 90%, and 100% and 94%, respectively. The sensitivity and specificity of TBSDL for identifying patients with bone microarchitecture impairment were 73% for all values.

Conclusions: The BMDDL and TBSDL derived from conventional CT images could identify patients who should undergo DXA, which could be a gatekeeper tool for detecting latent osteoporosis/osteopenia or bone microarchitecture impairment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184800PMC
http://dx.doi.org/10.1097/RCT.0000000000001437DOI Listing

Publication Analysis

Top Keywords

bone microarchitecture
24
deep learning
16
bone mineral
12
mineral density
12
learning convolutional
12
convolutional neural
12
neural network
12
sagittal vertebral
12
vertebral images
12
microarchitecture impairment
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!