Migratory animals can detect and use the Earth's magnetic field for orientation and navigation, sometimes over distances spanning thousands of kilometers. How they do so remains, however, one of the greatest mysteries in all sensory biology. Here, the author reviews the progress made to understand the molecular bases of the animal magnetic sense focusing on insect species, the only species in which genetic studies have so far been possible. The central hypothesis in the field posits that magnetically sensitive radical pairs formed by photoexcitation of cryptochrome proteins are key to animal magnetoreception. The author provides an overview of our current state of knowledge for the involvement of insect light-sensitive type I and light-insensitive type II cryptochromes in this enigmatic sense, and highlights some of the unanswered questions to gain a comprehensive understanding of magnetoreception at the organismal level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00359-023-01636-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!