Metal-Catalyst-Controlled Divergent Synthesis of γ-Butyrolactones via Intramolecular Coupling of Epoxides with Alcohols.

Org Lett

Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.

Published: May 2023

A metal-controlled divergent protocol for the synthesis of α- and β-substituted γ-butyrolactones was developed through intramolecular coupling of epoxides with alcohols. This method provides an efficient and practicable way to afford γ-butyrolactones with good efficiency, excellent regioselectivity, and broad substrate scope.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.3c00898DOI Listing

Publication Analysis

Top Keywords

intramolecular coupling
8
coupling epoxides
8
epoxides alcohols
8
metal-catalyst-controlled divergent
4
divergent synthesis
4
synthesis γ-butyrolactones
4
γ-butyrolactones intramolecular
4
alcohols metal-controlled
4
metal-controlled divergent
4
divergent protocol
4

Similar Publications

Intermediate Control: Unlocking Hitherto Unknown Reactivity and Selectivity in N-Conjugated Allenes and Alkynes.

Acc Chem Res

January 2025

Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.

View Article and Find Full Text PDF

Acenaphthylene-fused heteroarenes with a variety of five- and six-membered heterocycles such as thiophene, furan, benzofuran, pyrazole, pyridine and pyrimidine were synthesized via an efficient Pd-catalyzed reaction cascade in good to high yields (45-90%). This cascade involves an initial Suzuki-Miyaura cross-coupling reaction between 1,8-dihalonaphthalenes and heteroarylboronic acids or esters, followed by an intramolecular C-H arylation under the same conditions to yield the final heterocyclic fluoranthene analogues. The method was further employed to access polyoxygenated benzo[]fluoranthenes, which are all structurally relevant to benzo[]fluoranthene-based fungal natural products.

View Article and Find Full Text PDF

The present study reveals an unexpected anomaly observed in the acid-catalyzed hydrolysis of the 5,6-O-isopropylidene group in 3-O-protected D-gluco- and D-allofuranose derivatives. Although the removal of the 5,6-O-isopropylidene protecting group is typically rapid and quantitative under acidic conditions, an unexpected inhibition of this reaction is observed for the two C3-epimers, 3-O-imidazole sulfonyl moiety. X-ray data show a two-faced imidazole ring orientation in the crystal, while solution state NOE data reveal a critical interaction type between the isopropylidene and the imidazole rings.

View Article and Find Full Text PDF

Total Synthesis of Eribulin, a Macrocyclic Ketone Analogue of Halichondrin B, via Prins Macrocyclization.

Org Lett

December 2024

Eisai Inc. G2D2, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States.

An entirely chromium-free synthesis of eribulin, a fully synthetic macrocyclic ketone analogue of the marine natural product halichondrin B, was achieved through iterative sulfone fragment couplings followed by an intramolecular Prins reaction involving a C.26 homoallenyl alcohol and a C.27 aldehyde acetal.

View Article and Find Full Text PDF

A novel palladium-catalyzed intramolecular C-H amination via oxidative coupling exploiting inactivated N-substituted aryl amines on indoles for the one-pot synthesis of novel 11-benzo[4,5]imidazo[1,2-]indole derivatives is reported. The optimized reaction conditions accommodated a wide range of electronic variations on both the indole and the pendant aryl amine ring, resulting in products with good to excellent yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!