In Brief: During pregnancy, uterine kept quiescence along with uterine overdistention before labor. Prolonged stretching induced uterus myometrial hypoxia, increased TREK1 expression, and relaxed the myometrium, which may contribute to uterine quiescence and atony during pregnancy.

Abstract: The mechanisms underlying pre-labor uterine quiescence and uterine atony during overdistention are unclear. TREK1 (a two-pore domain potassium channel) and hypoxia-inducible factor-1α (HIF-1α) are activated by mechanical stretch, and their expression is upregulated by decreased uterine contractility. HIF-1α is a nuclear factor which regulates numerous target proteins, but whether it regulates TREK1 during the uterine stretch to cause uterine quiescence and/or atony is unclear. We investigated uterine contractility at different gestational stages in rats, as well as in non-pregnant uteri, which were induced by prolonged stretching and hypoxia. We also assessed the effects of incubating the uteri with or without echinomycin or l-methionine. Moreover, we analyzed HIF-1α and TREK1 expression levels in each group, as well as at various gestational stages of pregnant human uteri. We found that contractility was significantly decreased in pregnant uteri when compared with non-pregnant uteri, and this decrease was associated with increases in HIF-1α and TREK1 expression levels. HIF-1α and TREK1 expression levels in human uteri increased with the gestational length. Decreased uterine contractility and increased HIF-1α and TREK1 expression levels were also observed in non-pregnant rat uteri under 8 g of stretching tension or hypoxia. Inhibition of hypoxia with echinomycin restored normal uterine contractility, while HIF-1α and TREK1 protein expression remained reduced. TREK1 inhibition with l-methionine also restored uterine contractility under tension or hypoxia. In conclusion, we demonstrated that prolonged stretching induces myometrial hypoxia, increases TREK1 expression, and relaxes the myometrium, which may contribute to uterine quiescence and atony.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-23-0112DOI Listing

Publication Analysis

Top Keywords

trek1 expression
24
uterine quiescence
20
uterine contractility
20
hif-1α trek1
20
prolonged stretching
16
expression levels
16
uterine
13
trek1
11
uteri
8
rat uteri
8

Similar Publications

Two-pore-domain potassium channels (K2P) family is widely expressed in many human cell types and organs, which has important regulatory effect on physiological processes. K2P is sensitive to a variety of chemical and physical stimuli, and they have also been critically implicated in transmission of neural signal, ion homeostasis, cell development and death, and synaptic plasticity. Aberrant expression and dysfunction of K2P channels are involved in a range of diseases, including autoimmune, central nervous system, cardiovascular disease and others.

View Article and Find Full Text PDF

Mature hippocampal astrocytes exhibit a linear current-to-voltage (I-V) K membrane conductance called passive conductance. It is estimated to enable astrocytes to keep potassium homeostasis in the brain. We previously reported that the TWIK-1/TREK-1 heterodimeric channels are crucial for astrocytic passive conductance.

View Article and Find Full Text PDF

Ticks transmit a variety of pathogens, including rickettsia and viruses, when they feed on blood, afflicting humans and other animals. Bioactive components acting on inflammation, coagulation, and the immune system were reported to facilitate ticks' ability to suck blood and transmit tick-borne diseases. In this study, a novel peptide, IstTx, from an cDNA library was analyzed.

View Article and Find Full Text PDF

Articular chondrocytes are the primary cells responsible for maintaining the integrity and functionality of articular cartilage, which is essential for smooth joint movement. A key aspect of their role involves mechanosensitive ion channels, which allow chondrocytes to detect and respond to mechanical forces encountered during joint activity; nonetheless, the variety of mechanosensitive ion channels involved in this process has not been fully resolved so far. Because some members of the two-pore domain potassium (K2P) channel family have been described as mechanosensors in other cell types, in this study, we investigate whether articular chondrocytes express such channels.

View Article and Find Full Text PDF
Article Synopsis
  • - Autism Spectrum Disorder (ASD) is linked to gastrointestinal dysfunction and altered gut microbiota, affecting social skills and repetitive behaviors; this study explores how probiotics can interact with gut health in ASD mouse models.
  • - Mice models showed compromised intestinal barriers, with increased permeability and inflammation markers; C. butyricum probiotic helped enhance intestinal barrier function and mitigate behavioral issues in these mice.
  • - Results suggest that gut microbiota plays a significant role in ASD via the gut-brain axis, indicating that C. butyricum probiotics could be a potential therapeutic avenue for improving gut health and behavioral symptoms in ASD.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!