Effect of pressure on the carbon dioxide hydrate-water interfacial free energy along its dissociation line.

J Chem Phys

Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain.

Published: May 2023

We investigate the effect of pressure on the carbon dioxide (CO2) hydrate-water interfacial free energy along its dissociation line using advanced computer simulation techniques. In previous works, we have determined the interfacial energy of the hydrate at 400 bars using the TIP4P/Ice and TraPPE molecular models for water and CO2, respectively, in combination with two different extensions of the Mold Integration technique [J. Colloid Interface Sci. 623, 354 (2022) and J. Chem. Phys. 157, 134709 (2022)]. Results obtained from computer simulation, 29(2) and 30(2) mJ/m2, are found to be in excellent agreement with the only two measurements that exist in the literature, 28(6) mJ/m2 determined by Uchida et al. [J. Phys. Chem. B 106, 8202 (2002)] and 30(3) mJ/m2 determined by Anderson et al. [J. Phys. Chem. B 107, 3507 (2002)]. Since the experiments do not allow to obtain the variation of the interfacial energy along the dissociation line of the hydrate, we extend our previous studies to quantify the effect of pressure on the interfacial energy at different pressures. Our results suggest that there exists a correlation between the interfacial free energy values and the pressure, i.e., it decreases with the pressure between 100 and 1000 bars. We expect that the combination of reliable molecular models and advanced simulation techniques could help to improve our knowledge of the thermodynamic parameters that control the interfacial free energy of hydrates from a molecular perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0139699DOI Listing

Publication Analysis

Top Keywords

interfacial free
16
free energy
16
energy dissociation
12
interfacial energy
12
pressure carbon
8
carbon dioxide
8
hydrate-water interfacial
8
computer simulation
8
simulation techniques
8
molecular models
8

Similar Publications

Graphene-based supercapacitors have gained significant attention due to their exceptional energy storage capabilities. Despite numerous research efforts trying to improve the performance, the challenge of experimentally elucidating the nanoscale-interface molecular characteristics still needs to be tackled for device optimizations in commercial applications. To address this, we have conducted a series of experiments using substrate-free graphene field-effect transistors (SF-GFETs) and oxide-supported graphene field-effect transistors (OS-GFETs) to elucidate the graphene-electrolyte interfacial arrangement and corresponding capacitance under different surface potential states and ionic concentration environments.

View Article and Find Full Text PDF

Phytochlorin-Based Sonosensitizers Combined with Free-Field Ultrasound for Immune-Sonodynamic Cancer Therapy.

Adv Mater

January 2025

State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.

Phytochlorins, a class of plant-derived tetrapyrroles, show great potential as sonosensitizers in sonodynamic therapy (SDT). The development of new phytochlorin-based sonosensitizers has significantly improved SDT, yet the absence of specialized sonodynamic systems limits their clinical translation. Herein, a dedicated ultrasound system along with a detailed step-by-step sonodynamic process from in vitro to in vivo is developed to activate phytochlorin-based sonosensitizers.

View Article and Find Full Text PDF

The dielectric properties of polymers play a pivotal role in the development of advanced materials for energy storage, electronics, and insulation. This review comprehensively explores the critical relationship between polymer chain conformation, nanostructure, and dielectric properties, focusing on parameters such as dielectric constant, dielectric loss, and dielectric breakdown strength. It highlights how factors like chain rigidity, free volume, molecular alignment, and interfacial effects significantly influence dielectric performance.

View Article and Find Full Text PDF

Anisotropic particles have a wide range of applications in materials science such as emulsion stabilization, oil-water separation, and catalysis due to their asymmetric structure and properties. Nevertheless, designing and synthesizing large quantities of anisotropic particles with controlled morphologies continue to present considerable challenges. In this study, we successfully synthesized anisotropic microspheres using a soap-free seed emulsion polymerization method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!