Erythromycin (ERY), as a common macrolides antibiotic, is widely used for sterilisation and disinfection of humans or livestock whose migration and transformation in the surface water environment are significantly related to dissolved organic matter (DOM). The characteristics of DOM can be greatly influenced by the complexation between ERY with itself in soil infiltration system. Using spectroscopic techniques (excitation-emission matrices, parallel factor analysis, Fourier infrared spectroscopy, and synchronous fluorescence spectroscopies) to explore the complexation properties of each DOM component with ERY in the system. The binding order of ERY with DOM functional groups was determined by two-dimensional correlation spectroscopy combined with FTIR. The amide I band (C = O) exhibited stronger binding affinity. After the treatment, the DOM fluorescence intensity sharply decreased and the ERY concentration declined by 88.36%. Thus, synchronous degradation may occur between them. The result of synchronous fluorescence spectroscopy integrated with two-dimensional correlation spectroscopy indicated that the complexation sequencing and ability of DOM with ERY can be changed by a soil infiltration system. There are more binding sites exhibited in DOM with ERY in effluent than influent. A protein-like component of DOM showed priority binding order and more stable binding with ERY and had the highest Log K value of 3.61. These results demonstrated that the binding of DOM with ERY in a soil infiltration system could take out most fluorescent DOM, and reduce the concentration and risk of ERY in the surface water body.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2023.2214855 | DOI Listing |
Sci Rep
January 2025
School of Architecture, Planning and Environmental Policy, University College Dublin, Dublin, Ireland.
The Chinese government attaches great importance to the ecological restoration of abandoned open-pit mines, increasing the area of cultivated land, and ensuring food security. Soil reconstruction is a crucial step in ecological restoration of abandoned open-pit mines. This study investigated the utilization of hydrophobic sand to create an Air-Permeable Aquiclude (APAC) under the plant root zones, thereby minimizing water infiltration and enhancing soil aeration.
View Article and Find Full Text PDFEnviron Technol
February 2025
Faculty of Built Environment, University of New South Wales, Sydney, Australia.
Ecological ditches serve as one of the important measures for the concentrated infiltration of stormwater in the construction process of sponge cities. Prolonged concentrated infiltration of stormwater can lead to the accumulation of pollutants and pollution risks in the substrate of ecological ditches. In this study, two different substrate ecological ditches were constructed, namely, a combined substrate ecological ditch with zeolite + ceramsite (EA), and a biological substrate ecological ditch (EB).
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China. Electronic address:
Enhancing the understanding of the rainfall-runoff temporal dynamics in semi-arid and semi-humid regions is crucial for flood disaster mitigation. Loess Plateau is a unique environment within semi-arid and semi-humid regions, characterized by its deep loess soil, prevalent short-duration intense rainfall, and changes in underlying surface conditions. In this research, 25 catchments from the Loess Plateau were chosen to examine the temporal variations in event runoff responses across different time scales.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, China.
Light nonaqueous-phase liquids (LNAPLs) are the main source of organic pollution in soil and groundwater environments. The capillary zone, with varying moisture contents, is the last barrier against the infiltration of LNAPL pollutants into groundwater and plays an important role in their migration and transformation. However, the effect and mechanism of the moisture content in the capillary zone on LNAPL pollutant migration are still unclear.
View Article and Find Full Text PDFWater Res
January 2025
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA. Electronic address:
Dry wells are neighborhood-scale stormwater infiltration systems increasingly used in drought-prone areas for stormwater capture and groundwater recharge. These systems bypass the low permeability surface soil to maximize infiltration rates. However, hydrophilic contaminants of emerging concern (CECs) in urban runoff pose potential groundwater contamination risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!