Objective: It is clinically important for pedicle screws to be placed quickly and accurately. Misplacement of pedicle screws results in various complications. However, the incidence of complications varies greatly due to the different professional titles of physicians and surgical experience. Therefore, physicians must minimize pedicle screw dislocation. This study aims to compare the three nail placement methods in this study, and explore which method is the best for determining the anatomical landmarks and vertical trajectories.

Methods: This study involved 70 patients with moderate idiopathic scoliosis who had undergone deformity correction surgery between 2018 and 2021. Two spine surgeons used three techniques (preoperative computed tomography scan [CTS], visual inspection-X-freehand [XFH], and intraoperative detection [ID] of anatomical landmarks) to locate pedicle screws. The techniques used include visual inspection for 287 screws in 21 patients, preoperative planning for 346 screws in 26 patients, and intraoperative probing for 309 screws in 23 patients. Observers assessed screw conditions based on intraoperative CT scans (Grade A, B, C, D).

Results: There were no significant differences between the three groups in terms of age, sex, and degree of deformity. We found that 68.64% of screws in the XFH group, 67.63% in the CTS group, and 77.99% in the ID group were placed within the pedicle margins (grade A). On the other hand, 6.27% of screws in the XFH group, 4.33% in the CTS group, and 6.15% in the ID group were considered misplaced (grades C and D). The results show that the total amount of upper thoracic pedicle screws was fewer, meanwhile their placement accuracy was lower. The three methods used in this study had similar accuracy in intermediate physicians (P > 0.05). Compared with intermediate physicians, the placement accuracy of three techniques in senior physicians was higher. The intraoperative detection group was better than the other two groups in the good rate and accuracy of nail placement (P < 0.05).

Conclusion: Intraoperative common anatomical landmarks and vertical trajectories were beneficial to patients with moderate idiopathic scoliosis undergoing surgery. It is an optimal method for clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235156PMC
http://dx.doi.org/10.1111/os.13729DOI Listing

Publication Analysis

Top Keywords

pedicle screws
16
anatomical landmarks
12
screws patients
12
screws
9
landmarks vertical
8
pedicle screw
8
nail placement
8
methods study
8
three techniques
8
intraoperative detection
8

Similar Publications

Osteoporotic vertebral fractures (OVFs) in elderly patients pose challenges due to bone destruction and surgical risks. This case report describes a minimally invasive approach using calcium phosphate cement (CPC) vertebroplasty and short fusion with cement augmentation of pedicle screws (CAPS) in a 91-year-old woman with severe OVF. The patient underwent CPC vertebroplasty at L1 and CAPS fixation at T12-L2, followed by osteoporosis medication.

View Article and Find Full Text PDF

Rationale: Alkaptonuria (AKU) is a rare, inherited metabolic disease caused by deficient activity of homogentisic acid oxidase, leading to the accumulation of homogentisic acid and its oxidized product, benzoquinone acetic acid. These compounds cause black discoloration of cartilage, degeneration, inflammation, and calcification of intervertebral disks and large joints, resulting in pain and impaired quality of life. Despite its debilitating effects, there are no curative treatments for AKU, and management remains supportive.

View Article and Find Full Text PDF

Study Design: Retrospective Cohort Study.

Objective: This study aimed to compare outcomes in AIS patients that underwent PSF using either freehand with occasional fluoroscopic assistance (FOFA), computer assisted surgery/navigation (CAS), or technique and technology (T&T).

Summary Of Background Data: Pedicle screw insertion in scoliosis is challenging due to abnormal pedicle morphology.

View Article and Find Full Text PDF

Background: In atlantoaxial instabilities, posterior C1/C2 fusion using lateral mass screws (LMS) or pedicle screws (PS) in a mono- or bicortical position in the atlas is a typical treatment. The bone microstructure and positioning of the screw trajectories appear to be of significant relevance for stability.

Purpose: The aim of this study was a comparative analysis of the mechanical durability of screw fixation concerning microstructural characteristics of the trajectories of LMS and PS in mono- and bicortical position.

View Article and Find Full Text PDF

Objective: When creating minimally invasive spine fusion constructs, accurate pedicle screw fixation is essential for biomechanical strength and avoiding complications arising from delicate surrounding structures. As research continues to analyze how to improve accuracy, long-term patient outcomes based on screw accuracy remain understudied. The objective of this study was to analyze long-term patient outcomes based on screw accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!