Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A RASER (Radio Amplification by Stimulated Emission of Radiation) facilitates the study of nonlinear phenomena, as well as the determination of NMR parameters with high precision. To achieve maximum sensitivity in the desired operating mode, it is crucial to control the RASER over long periods of time. So far, this was only possible at ultra-low magnetic fields. Here, we introduce a way to control the operating regime of a RASER at a magnetic field of 1.45 T. We employ a continuous-flow RASER, pumped by PHIP (ParaHydrogen Induced Polarization). The hydrogenation of vinyl acetate (VA) with parahydrogen provides the required negative polarization on the methyl group of the product ethyl acetate (EA). The protons within the methyl group, separated by a 7 Hz J-coupling, are RASER active. This system demonstrates five RASER phenomena: inequivalent and equivalent amplitudes in the "normal NMR mode", period doublings, frequency combs, and chaos. The experiments match with simulations based on a theoretical model of two nonlinear-coupled RASER modes. We predict the RASER regime at set conditions and visualize the prediction in a bifurcation diagram.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202300204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!