Coffee rust is one of the main diseases that affect coffee plantations worldwide, causing large-scale ecological and economic damage. While multiple methods have been proposed to tackle this challenge, using snails as biological agents have shown to be the most consistent and promising approach. However, snails are an invasive species, and overusing them can cause devastating outcomes. In this paper, we develop and explore an ecological-epidemiological mathematical model for the coffee tree rust pandemic control using snails as biological agents. We analyze the equilibria of the proposed system with their stability properties. In addition, we perform numerical analysis to obtain the sensitivity of the system to different changes and manipulation of the snails pandemic control, under specific conditions. Finally, we propose an in silico mechanism to obtain an analytical connection between the system's initial condition and the number of snails needed to optimally control the rust pandemic spread while preventing the snail population to grow unmanageably. Our model can be used to optimize the usage of snails as biological agents to control the rust pandemic in spatially-small areas, by predicting the number of snails one needs to introduce to the ecosystem in order to obtain a desired outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biosystems.2023.104916 | DOI Listing |
Food Environ Virol
January 2025
Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
Invasive alien species such as freshwater snails have significantly affected the food, environment, and the health of humans and animals, which have unfortunately received insufficient attention. To facilitate the study of viromes in snail species, we compared the enrichment effect of cesium chloride (CsCl) and sucrose density gradient ultracentrifugations in the recovery of diverse viruses in Pomacea canaliculata and Achatina fulica. First, we showed that CsCl-based ultracentrifugation enriched more virus contigs and reduced the nucleic acid background of the Pomacea canaliculata and was thus beneficial for virus recovery.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland. Electronic address:
Background: Mammalian metallothioneins (MTs) play a crucial role in maintaining Zn(II) and Cu(I) homeostasis, as well as regulating the cellular redox potential. They are involved in cancer resistance to cisplatin-related drugs and the sequestration of toxic metal ions. To investigate their participation in specific physiological and pathological processes, it is imperative to develop an analytical method for measuring changes in protein concentration both in vitro and in vivo.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea.
Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China.
Oecologia
January 2025
Department of Biological Sciences, California State Polytechnic University, Humboldt, 1 Harpst St., Arcata, CA, 95521, USA.
The effects of climate warming on the distribution of range-expanding species are well documented, but the interactive effects of climate warming and range-expanding species on recipient communities remain understudied. With climate warming, range-expanding species may threaten local biodiversity due to their relatively stronger competitive or predatory effects on potentially weakened, or less well-adapted recipient communities. Acanthinucella spirata is a predatory marine gastropod that has expanded its distribution north along the California coast since the Pleistocene via a poleward range shift, tracking climatic warming.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!