A recombinant strain of Komagataeibacter xylinus ATCC 23770 for production of bacterial cellulose from mannose-rich resources.

N Biotechnol

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; Group of Microbiological Engineering and Biomedical Materials, College of Biological Science and Medical Engineering, Donghua University, North Ren Min Road 2999, Shanghai 201620, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Advanced Functional Fiber Innovation Center, Wujiang, Suzhou, China. Electronic address:

Published: September 2023

The development of bacterial cellulose (BC) industrialization has been seriously affected by its production. Mannose/mannan is an essential component in many biomass resources, but Komagataeibacter xylinus uses mannose in an ineffective way, resulting in waste. The aim of this study was to construct recombinant bacteria to use mannose-rich biomass efficiently as an alternative and inexpensive carbon source in place of the more commonly used glucose. This strategy aimed at modification of the mannose catabolic pathway via genetic engineering of K. xylinus ATCC 23770 strain through expression of mannose kinase and phosphomannose isomerase genes from the Escherichia coli K-12 strain. Recombinant and wild-type strains were cultured under conditions of glucose and mannose respectively as sole carbon sources. The fermentation process and physicochemical properties of BC were investigated in detail in the strains cultured in mannose media. The comparison showed that with mannose as the sole carbon source, the BC yield from the recombinant strain increased by 84%, and its tensile strength and elongation were increased 1.7 fold, while Young's modulus was increased 1.3 fold. The results demonstrated a successful improvement in BC yield and properties on mannose-based medium compared with the wild-type strain. Thus, the strategy of modifying the mannose catabolic pathway of K. xylinus is feasible and has significant potential in reducing the production costs for industrial production of BC from mannose-rich biomass.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2023.05.002DOI Listing

Publication Analysis

Top Keywords

recombinant strain
8
komagataeibacter xylinus
8
xylinus atcc
8
atcc 23770
8
bacterial cellulose
8
mannose-rich biomass
8
carbon source
8
mannose catabolic
8
catabolic pathway
8
strains cultured
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!