Succinate based polymers drive immunometabolism in dendritic cells to generate cancer immunotherapy.

J Control Release

Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA; Materials Science and Engineering, School for the Engineering of Matter, Transport, and energy, Arizona State University, Tempe, AZ 85281, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; Biodesign Center for Biomaterials Innovation and Translation. Electronic address:

Published: June 2023

Boosting the metabolism of immune cells while restricting cancer cell metabolism is challenging. Herein, we report that using biomaterials for the controlled delivery of succinate metabolite to phagocytic immune cells activates them and modulates their metabolism in the presence of metabolic inhibitors. In young immunocompetent mice, polymeric microparticles, with succinate incorporated in the backbone, induced strong pro-inflammatory anti-melanoma responses. Administration of poly(ethylene succinate) (PES MP)-based vaccines and glutaminase inhibitor to young immunocompetent mice with aggressive and large, established B16F10 melanoma tumors increased their survival three-fold, a result of increased cytotoxic T cells expressing RORγT (Tc17). Mechanistically, PES MPs directly modulate glutamine and glutamate metabolism, upregulate succinate receptor SUCNR1, activate antigen presenting cells through and HIF-1alpha, TNFa and TSLP-signaling pathways, and are dependent on alpha-ketoglutarate dehydrogenase for their activity, which demonstrates correlation of succinate delivery and these pathways. Overall, our findings suggest that immunometabolism-modifying PES MP strategies provide an approach for developing robust cancer immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324539PMC
http://dx.doi.org/10.1016/j.jconrel.2023.05.014DOI Listing

Publication Analysis

Top Keywords

immune cells
8
young immunocompetent
8
immunocompetent mice
8
succinate
6
cells
5
succinate based
4
based polymers
4
polymers drive
4
drive immunometabolism
4
immunometabolism dendritic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!