A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cascade-amplified self-immolative polymeric prodrug for cancer therapy by disrupting redox homeostasis. | LitMetric

Cascade-amplified self-immolative polymeric prodrug for cancer therapy by disrupting redox homeostasis.

J Control Release

School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Published: June 2023

The amplification of reactive oxygen species (ROS) generation and glutathione (GSH) depletion in cancer cells represents a promising strategy to disrupt redox homeostasis for cancer therapy. Quinone methide and its analogs (QM) have recently been recognized as potential GSH scavengers for anticancer applications; however, an effective QM prodrug is yet to be developed. In this study, we prepare a self-immolative polymeric prodrug (SPP), which could be selectively degraded to generate large quantities of QMs in cancer cells during the spontaneous stepwise head-to-tail degradation of SPP. The amphiphilic SPP is self-assembled into nano-sized micelles, allowing for encapsulating 2-methoxy-β-estradiol (2ME), an anticancer drug that produces a large amount of intracellular ROS. When SPP@2ME, as the cascade-amplified prodrug, is treated on the cancer cells, 2ME is rapidly released at the ROS-rich intracellular environment by degradation of SPP, thus generating more ROS that triggers the degradation of more SPP chains. Such a domino-like cascade-amplified feedback loop significantly amplifies oxidative stress and disrupts the redox homeostasis in cancer cells. This unique strategy provides synergistic anticancer therapeutic efficacy and demonstrates an important perception in innovative and precise nanomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2023.05.015DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
redox homeostasis
12
degradation spp
12
self-immolative polymeric
8
polymeric prodrug
8
cancer therapy
8
homeostasis cancer
8
cancer
6
spp
5
cascade-amplified self-immolative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!