Nowadays, more and more new synthetic cannabinoids (SCs) appearing on the illicit market present challenges to analytical, forensic, and toxicology experts. For a better understanding of the physiological effect of SCs, the key issue is studying their metabolomic and psychoactive properties. In this study, our validated targeted reversed phase UHPLC-MS/MS method was used for determination of urinary concentration of 5F-MDMB-PICA, 4F-MDMB-BICA, and their primary metabolites. The liquid-liquid extraction procedure was applied for the enrichment of SCs. The pharmacological characterization of investigated SCs were studied by radioligand competition binding and ligand stimulated [S]GTPγS binding assays. For 5F-MDMB-PICA and 4F-MDMB-BICA, the median urinary concentrations were 0.076 and 0.312 ng/mL. For primary metabolites, the concentration range was 0.029-881.02* ng/mL for 5F-MDMB-PICA-COOH, and 0.396-4579* ng/mL for 4F-MDMB-BICA-COOH. In the polydrug aspect, the 22 urine samples were verified to be abused with 6 illicit drugs. The affinity of the metabolites to CB1R significantly decreased compared to the parent ligands. In the GTPγS functional assay, both 5F-MDMB-PICA and 4F-MDMB-BICA were acting as full agonists, while the metabolites were found as weak inverse agonists. Additionally, the G-protein stimulatory effects of the full agonist 5F-MDMB-PICA and 4F-MDMB-BICA were reduced by metabolites. These results strongly indicate the dose-dependent CB1R-mediated weak inverse agonist effects of the two butanoic acid metabolites. The obtained high concentration of main urinary metabolites of 5F-MDMB-PICA and 4F-MDMB-BICA confirmed the relevance of their routine analysis in forensic and toxicological practices. Based on in vitro binding assays, the metabolites presumably might cause a lower psychoactive effect than parent compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2023.116548 | DOI Listing |
Toxicol Appl Pharmacol
July 2023
Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged Somogyi, utca 4., Szeged, Hungary. Electronic address:
Nowadays, more and more new synthetic cannabinoids (SCs) appearing on the illicit market present challenges to analytical, forensic, and toxicology experts. For a better understanding of the physiological effect of SCs, the key issue is studying their metabolomic and psychoactive properties. In this study, our validated targeted reversed phase UHPLC-MS/MS method was used for determination of urinary concentration of 5F-MDMB-PICA, 4F-MDMB-BICA, and their primary metabolites.
View Article and Find Full Text PDFDrug Test Anal
August 2021
Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany.
Analysis of synthetic cannabinoids still poses a challenge for many institutions due to the number of available substances and the constantly changing drug market. Both new and well-known substances keep appearing and disappearing on the market, making it hard to adapt analytical methods in a timely manner. In this study, we developed a qualitative screening approach for synthetic cannabinoids and their metabolites by means of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!