Ferrocene functionalized rGO-ZnO nanocomposite was synthesized via the facile hydrothermal method. ZnO was reduced over the 3-dimensional rGO framework (3D-Fc@rGO) using Camellia sinensis extract. The Fc@rGO-ZnO nanocomposite was employed for pharmaceutical degradation (sulfamethoxazole (SMX) and ciprofloxacin (CIP)) in an aqueous solution under UV C light. The physicochemical properties of the as-prepared photocatalyst were characterized using FTIR, XRD, FESEM, EDS mapping, HR-TEM, XPS, and DR-UV Vis. The as-synthesized Fc@rGO-ZnO photocatalyst performed remarkably against pristine ZnO, with a fivefold increase in removal efficiency. This superior activity was attributed to its improved light harvesting, charge carrier interface, and enhanced charge separation. Additionally, the photocatalyst obeyed the Lagergen model for pseudo-first-order kinetics. Congruously, the integrated approach of Fc@rGO and ZnO as oxidizing agents was proficient in removing >95% of antibiotics (CIP and SMX) within 180 min. Furthermore, the heterostructure configuration developed between Fc@rGO and ZnO helps in charge migration and generation of abundant •OH and •O radicals for photodegradation activities. The toxicity assessment of the treated solutions showed improved cell viability in the algal strains of Scenedesmus and Chlorella sp. Moreover, this novel approach for the synthesis of a photoactive nanocomposite is found to be low-cost and reusable for three cycles. The nanocomposite is environmentally sustainable paving the way for practical applications in the treatment of different classes of antibiotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138912 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, India.
In this study, we demonstrate MXene (TiCT)-based coin-cell asymmetric supercapacitor (coin-cell ASC) exhibiting high energy density and high power density along with good capacitance. We synthesized mesoporous carbon (MC) by annealing alginic acid at varying temperatures (900 °C, 1000 °C and 1100 °C). Among the prepared samples, MC-1000 exhibited a highly porous structure and a higher surface area.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Life Sciences, Henan University, Kaifeng, Henan 475001, China.
Melanoma, a highly aggressive skin cancer, poses significant challenges due to its rapid metastases and high mortality rates. While metformin (Met), a first-line medication for type 2 diabetes, has shown promise in inhibiting tumor growth and metastases, its clinical efficacy in cancer therapy is limited by low bioavailability, short half-life, and gastrointestinal adverse reactions associated with oral administration. In this study, we developed a hollow mesoporous polydopamine nanocomposite (HMPDA-PEG@Met@AB) coloaded with Met and ammonia borane (AB), designed to enable a combined gas-assisted, photothermal, and chemotherapeutic approach for melanoma treatment.
View Article and Find Full Text PDFChem Sci
January 2025
School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 China
Reactive oxygen species (ROS) play a critical role in regulating various physiological processes. To gain a comprehensive understanding of their distinct functions in different physiological events, it is imperative to detect binary ROS simultaneously. However, the development of the sensing method capable of binary ROS detection remains a significant challenge.
View Article and Find Full Text PDFFront Pharmacol
January 2025
The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China.
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and mitigating oxidative stress is crucial in managing MI. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in combating oxidative stress and facilitating cardiac remodeling post-MI. Here, we engineered Cerium oxide (CeO) nanoparticle-guided assemblies of ceria/Nrf2 nanocomposites to deliver Nrf2 plasmids.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology Patiala 147004 Punjab India
Water contamination is a result of the excessive use of antibiotics nowadays. Owing to this environmental toxicity, photocatalytic degradation is the primary approach to non-biological degradation for their removal. In this context, zerovalent Bi-doped g-CN/BiMoO [g-CN/Bi@BiMoO] ternary nanocomposite was prepared using the wet impregnation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!