The role of pH transcription factor Appacc in upregulation of pullulan biosynthesis in Aureobasidium pullulans using potato waste as a substrate.

Int J Biol Macromol

School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Published: July 2023

pH is one of the important environmental factors affecting the growth, development and secondary metabolites of fungi. To better utilize potato waste for the production of pullulan by fermentation, in this study, the amino acid sequence and structural domain of pH transcription factor Appacc were analyzed using the bioinformatics methods. Appacc showed three typically conserved zinc finger domains, with the closest homology to Zymoseptoria brevis. The function of Appacc was characterized by ΔAppacc and OEXpacc mutants. The mycelium growth of ΔApacc mutants was inhibited, especially, under alkaline conditions. Furthermore, the pullulan production of ΔAppacc mutant was reduced and the expression of pullulan synthetic genes also decreased. Moreover, the OEXpacc mutant further demonstrated that pacc could regulate the expression of pullulan synthesis genes. The yield of pullulan polysaccharide increased from 13.6 g/L to 17.8 g/L by direct fermentation without changing the pH of potato waste. These results suggest that Appacc played a vital role in the growth of Aureobasidium pullulans and that the production of pullulan from potato waste can be increased by overexpression of pacc gene.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.124797DOI Listing

Publication Analysis

Top Keywords

potato waste
16
transcription factor
8
factor appacc
8
aureobasidium pullulans
8
production pullulan
8
expression pullulan
8
pullulan
7
appacc
5
role transcription
4
appacc upregulation
4

Similar Publications

This study presents an eco-friendly, cost-effective approach for synthesizing highly efficient nanocatalysts with the help of organic waste. Iron nanoparticles (INPs) were synthesized from aqueous extracts of potato, potato peel, and potato leaf and were evaluated for their photocatalytic efficiency for the degradation of methylene blue dye. X-ray Diffraction (XRD) confirmed FeO nanoparticles cubic crystal structure with the smallest crystallite size (9.

View Article and Find Full Text PDF

Carob pulp is a valuable source of cellulose-rich fraction (CRF) for many food applications. This study aimed to obtain and characterize a CRF derived from carob pulp waste after sugar removal and to evaluate its potential use in the 3D printing of cellulose-rich foods. Thus, the extraction of the CRF present in carob pulp (by obtaining the alcohol-insoluble residue) was carried out, accounting for nearly 45% dm (dry matter) of this byproduct.

View Article and Find Full Text PDF

In this study, a biocomposite material (CS-OXA/PP-SA) composed of ionic crosslinked chitosan-oxalate (CS-OXA) and chemically modified lignocellulosic biomass (potato (Solanum tuberosum L.) peel-HSO acid, PP-SA) was synthesized to serve as a bioadsorbent for removing methylene blue (MB) dye from aquatic systems. The research utilized response surface methodology (RSM) to evaluate the effects of three variables: CS-OXA/PP-SA dosage (0.

View Article and Find Full Text PDF

A carbon-based material was synthesized using potato peels (BPP) and banana pseudo-stems (BPS), both of which were modified with manganese to produce BPP-Mn and BPS-Mn, respectively. These materials were assessed for their ability to activate peroxymonosulfate (PMS) in the presence of MnCO to degrade acetaminophen (ACE), an emerging water contaminant. The materials underwent characterization using spectroscopic, textural, and electrochemical techniques.

View Article and Find Full Text PDF

Beyond waste in agriculture: Feedstock characterization for thermochemical conversion based on potato above-ground biomass.

Bioresour Technol

December 2024

Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9, Canada. Electronic address:

Agricultural residues represent a valuable opportunity to develop circular bioeconomic systems centered on biomass. Characterizing this type of biomass can alleviate the pressure on current biomass sources (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!