An important aspect in evaluating the resilience of hip replacement designs is testing their performance under adverse conditions that cause edge loading of the acetabular liner. The representation of edge loading conditions in finite element models is computationally challenging due to the changing contact locations, need for fine meshes, and dynamic nature of the system. In this study, a combined mesh and mass-scaling sensitivity study was performed to identify an appropriate compromise between convergence and solution time of explicit finite element analysis in investigating edge loading in hip replacement devices. The optimised model was then used to conduct a sensitivity test investigating the effect of different hip simulator features (the mass of the translating fixture and mediolateral spring damping) on the plastic strain in the acetabular liner. Finally, the effect of multiple loading cycles on the progressive accumulation of plastic strain was then also examined using the optimised model. A modelling approach was developed which provides an effective compromise between mass-scaling effects and mesh refinement for a solution time per cycle of less than 1 h. This 'Recommended Mesh' model underestimated the plastic strains by less than 10%, compared to a 'Best Estimate' model with a run time of ∼190 h. Starting with this model setup would therefore significantly reduce any new model development time while also allowing the flexibility to incorporate additional complexities as required. The polyethylene liner plastic strain was found to be sensitive to the simulator mass and damping (doubling the mass or damping had a similar magnitude effect to doubling the swing phase load) and these should ideally be described in future experimental studies. The majority of the plastic strain (99%) accumulated within the first three load cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2023.105865 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!