https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=37182106&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3718210620230805
2589-00422652023May19iScienceiScienceNeurogenetic identification of mosquito sensory neurons.10669010669010669010.1016/j.isci.2023.106690Anopheles mosquitoes, as vectors for the malaria parasite, are a global threat to human health. To find and bite a human, they utilize neurons within their sensory appendages. However, the identity and quantification of sensory appendage neurons are lacking. Here we use a neurogenetic approach to label all neurons in Anopheles coluzzii mosquitoes. We utilize the homology assisted CRISPR knock-in (HACK) approach to generate a T2A-QF2w knock-in of the synaptic gene bruchpilot. We use a membrane-targeted GFP reporter to visualize the neurons in the brain and to quantify neurons in all major chemosensory appendages (antenna, maxillary palp, labella, tarsi, and ovipositor). By comparing labeling of brp>GFP and Orco>GFP mosquitoes, we predict the extent of neurons expressing ionotropic receptors (IRs) or other chemosensory receptors. This work introduces a valuable genetic tool for the functional analysis of Anopheles mosquito neurobiology and initiates characterization of the sensory neurons that guide mosquito behavior.© 2023 The Author(s).KonopkaJoanna KJKThe Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.TaskDaryaDThe Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.PoinapenDannyDRobarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.PotterChristopher JCJThe Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.engR01 AI137078AINIAID NIH HHSUnited StatesJournal Article20230418
United StatesiScience1017240382589-0042Cellular neuroscienceMolecular neuroscienceNeuroscienceSensory neuroscienceThe authors declare no competing interests.
202212520233620234132023514191420235141913202351412272023418epublish37182106PMC1017277510.1016/j.isci.2023.106690S2589-0042(23)00767-8World Health Organization . World Health Organization; 2021. World Malaria Report 2021.Montell C., Zwiebel L.J. In: Advances in Insect Physiology. Raikhel A.S., editor. Academic Press; 2016. Chapter ten - mosquito sensory systems; pp. 293–328.10.1016/bs.aiip.2016.04.007Andrés M., Su M.P., Albert J., Cator L.J. Buzzkill: targeting the mosquito auditory system. Curr. Opin. Insect Sci. 2020;40:11–17. doi: 10.1016/j.cois.2020.04.003.10.1016/j.cois.2020.04.00332505906van Breugel F., Riffell J., Fairhall A., Dickinson M.H. Mosquitoes use vision to associate odor plumes with thermal targets. Curr. Biol. 2015;25:2123–2129. doi: 10.1016/j.cub.2015.06.046.10.1016/j.cub.2015.06.046PMC454653926190071Raji J.I., DeGennaro M. Genetic analysis of mosquito detection of humans. Curr. Opin. Insect Sci. 2017;20:34–38. doi: 10.1016/j.cois.2017.03.003.10.1016/j.cois.2017.03.003PMC539344928428935Bowen M.F. The sensory physiology of host-seeking behavior in mosquitoes. Annu. Rev. Entomol. 1991;36:139–158. doi: 10.1146/annurev.en.36.010191.001035.10.1146/annurev.en.36.010191.0010351672499Konopka J.K., Task D., Afify A., Raji J., Deibel K., Maguire S., Lawrence R., Potter C.J. Olfaction in Anopheles mosquitoes. Chem. Senses. 2021;46 doi: 10.1093/chemse/bjab021.10.1093/chemse/bjab021PMC825610733885760Takken W. The role of olfaction in host-seeking of mosquitoes: a review. Int. J. Trop. Insect Sci. 1991;12:287–295. doi: 10.1017/S1742758400020816.10.1017/S1742758400020816Takken W., Knols B.G. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol. 1999;44:131–157. doi: 10.1146/annurev.ento.44.1.131.10.1146/annurev.ento.44.1.1319990718DeGennaro M., McBride C.S., Seeholzer L., Nakagawa T., Dennis E.J., Goldman C., Jasinskiene N., James A.A., Vosshall L.B. Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature. 2013;498:487–491. doi: 10.1038/nature12206.10.1038/nature12206PMC369602923719379Sun H., Liu F., Ye Z., Baker A., Zwiebel L.J. Mutagenesis of the orco odorant receptor co-receptor impairs olfactory function in the malaria vector Anopheles coluzzii. Insect Biochem. Mol. Biol. 2020;127 doi: 10.1016/j.ibmb.2020.103497.10.1016/j.ibmb.2020.103497PMC771878333188923Carey A.F., Wang G., Su C.-Y., Zwiebel L.J., Carlson J.R. Odorant reception in the malaria mosquito Anopheles gambiae. Nature. 2010;464:66–71. doi: 10.1038/nature08834.10.1038/nature08834PMC283323520130575De Obaldia M.E., Morita T., Dedmon L.C., Boehmler D.J., Jiang C.S., Zeledon E.V., Cross J.R., Vosshall L.B. Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Cell. 2022;185:4099–4116.e13. doi: 10.1016/j.cell.2022.09.034.10.1016/j.cell.2022.09.034PMC1006948136261039Greppi C., Laursen W.J., Budelli G., Chang E.C., Daniels A.M., van Giesen L., Smidler A.L., Catteruccia F., Garrity P.A. Mosquito heat seeking is driven by an ancestral cooling receptor. Science. 2020;367:681–684. doi: 10.1126/science.aay9847.10.1126/science.aay9847PMC809207632029627Jové V., Gong Z., Hol F.J.H., Zhao Z., Sorrells T.R., Carroll T.S., Prakash M., McBride C.S., Vosshall L.B. Sensory discrimination of blood and floral nectar by Aedes aegypti mosquitoes. Neuron. 2020;108:1163–1180.e12. doi: 10.1016/j.neuron.2020.09.019.10.1016/j.neuron.2020.09.019PMC983138133049200Liu F., Ye Z., Baker A., Sun H., Zwiebel L.J. Gene editing reveals obligate and modulatory components of the CO2 receptor complex in the malaria vector mosquito, Anopheles coluzzii. Insect Biochem. Mol. Biol. 2020;127 doi: 10.1016/j.ibmb.2020.103470.10.1016/j.ibmb.2020.103470PMC770467332966873McBride C.S., Baier F., Omondi A.B., Spitzer S.A., Lutomiah J., Sang R., Ignell R., Vosshall L.B. Evolution of mosquito preference for humans linked to an odorant receptor. Nature. 2014;515:222–227. doi: 10.1038/nature13964.10.1038/nature13964PMC428634625391959Ye Z., Liu F., Ferguson S.T., Baker A., Pitts R.J., Zwiebel L.J. Ammonium transporter AcAmt mutagenesis uncovers reproductive and physiological defects without impacting olfactory responses to ammonia in the malaria vector mosquito Anopheles coluzzii. Insect Biochem. Mol. Biol. 2021;134 doi: 10.1016/j.ibmb.2021.103578.10.1016/j.ibmb.2021.103578PMC818733533933561Ye Z., Liu F., Sun H., Ferguson S.T., Baker A., Ochieng S.A., Zwiebel L.J. Discrete roles of Ir76b ionotropic coreceptor impact olfaction, blood feeding, and mating in the malaria vector mosquito Anopheles coluzzii. Proc. Natl. Acad. Sci. USA. 2022;119 doi: 10.1073/pnas.2112385119.10.1073/pnas.2112385119PMC919135335648836Laursen W.J., Budelli G., Tang R., Chang E.C., Busby R., Shankar S., Gerber R., Greppi C., Albuquerque R., Garrity P.A. Humidity sensors that alert mosquitoes to nearby hosts and egg-laying sites. Neuron. 2023;111:874–887.e8. doi: 10.1016/j.neuron.2022.12.025.10.1016/j.neuron.2022.12.025PMC1002346336640768Kistler K.E., Vosshall L.B., Matthews B.J. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep. 2015;11:51–60. doi: 10.1016/j.celrep.2015.03.009.10.1016/j.celrep.2015.03.009PMC439403425818303Potter C.J., Tasic B., Russler E.V., Liang L., Luo L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell. 2010;141:536–548. doi: 10.1016/j.cell.2010.02.025.10.1016/j.cell.2010.02.025PMC288388320434990Riabinina O., Potter C.J. The Q-system: a versatile expression system for Drosophila. Methods Mol. Biol. 2016;1478:53–78. doi: 10.1007/978-1-4939-6371-3_3.10.1007/978-1-4939-6371-3_3PMC527076227730575Riabinina O., Luginbuhl D., Marr E., Liu S., Wu M.N., Luo L., Potter C.J. Improved and expanded Q-system reagents for genetic manipulations. Nat. Methods. 2015;12:219–222. doi: 10.1038/nmeth.3250.10.1038/nmeth.3250PMC434439925581800Lin C.C., Potter C.J. Editing transgenic DNA components by inducible gene replacement in Drosophila melanogaster. Genetics. 2016;203:1613–1628. doi: 10.1534/genetics.116.191783.10.1534/genetics.116.191783PMC498126527334272Task D., Lin C.-C., Vulpe A., Afify A., Ballou S., Brbic M., Schlegel P., Raji J., Jefferis G., Li H., et al. Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. Elife. 2022;11 doi: 10.7554/eLife.72599.10.7554/eLife.72599PMC902082435442190Zhao Z., Tian D., McBride C.S. Development of a pan-neuronal genetic driver in Aedes aegypti mosquitoes. Cell Rep. Methods. 2021;1 doi: 10.1016/j.crmeth.2021.100042.10.1016/j.crmeth.2021.100042PMC847825634590074Raad H., Ferveur J.-F., Ledger N., Capovilla M., Robichon A. Functional gustatory role of chemoreceptors in Drosophila wings. Cell Rep. 2016;15:1442–1454. doi: 10.1016/j.celrep.2016.04.040.10.1016/j.celrep.2016.04.04027160896Riabinina O., Task D., Marr E., Lin C.-C., Alford R., O'Brochta D.A., Potter C.J. Organization of olfactory centres in the malaria mosquito Anopheles gambiae. Nat. Commun. 2016;7 doi: 10.1038/ncomms13010.10.1038/ncomms13010PMC506396427694947Kittel R.J., Wichmann C., Rasse T.M., Fouquet W., Schmidt M., Schmid A., Wagh D.A., Pawlu C., Kellner R.R., Willig K.I., et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science. 2006;312:1051–1054. doi: 10.1126/science.1126308.10.1126/science.112630816614170Südhof T.C. The presynaptic active zone. Neuron. 2012;75:11–25. doi: 10.1016/j.neuron.2012.06.012.10.1016/j.neuron.2012.06.012PMC374308522794257Wagh D.A., Rasse T.M., Asan E., Hofbauer A., Schwenkert I., Dürrbeck H., Buchner S., Dabauvalle M.C., Schmidt M., Qin G., et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron. 2006;49:833–844. doi: 10.1016/j.neuron.2006.02.008.10.1016/j.neuron.2006.02.00816543132Pitts R.J., Rinker D.C., Jones P.L., Rokas A., Zwiebel L.J. Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genom. 2011;12:271. doi: 10.1186/1471-2164-12-271.10.1186/1471-2164-12-271PMC312678221619637Raji J.I., Konopka J.K., Potter C.J. A spatial map of antennal-expressed ionotropic receptors in the malaria mosquito. Cell Rep. 2023;42 doi: 10.1016/j.celrep.2023.112101.10.1016/j.celrep.2023.112101PMC1041273636773296Saveer A.M., Pitts R.J., Ferguson S.T., Zwiebel L.J. Characterization of chemosensory responses on the labellum of the malaria vector mosquito, Anopheles coluzzii. Sci. Rep. 2018;8:5656. doi: 10.1038/s41598-018-23987-y.10.1038/s41598-018-23987-yPMC588483729618749McIver S., Siemicki R. Palpal sensilla of selected anopheline mosquitoes. J. Parasitol. 1975;61:535–538. doi: 10.2307/3279338.10.2307/3279338Lu T., Qiu Y.T., Wang G., Kwon J.Y., Rutzler M., Kwon H.-W., Pitts R.J., van Loon J.J.A., Takken W., Carlson J.R., Zwiebel L.J. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr. Biol. 2007;17:1533–1544. doi: 10.1016/j.cub.2007.07.062.10.1016/j.cub.2007.07.062PMC311345817764944McIver S.B. Sensilla of mosquitoes (Diptera: Culicidae)1, 2. J. Med. Entomol. 1982;19:489–535. doi: 10.1093/jmedent/19.5.489.10.1093/jmedent/19.5.4896128422Herre M., Goldman O.V., Lu T.-C., Caballero-Vidal G., Qi Y., Gilbert Z.N., Gong Z., Morita T., Rahiel S., Ghaninia M., et al. Non-canonical odor coding in the mosquito. Cell. 2022;185:3104–3123.e28. doi: 10.1016/j.cell.2022.07.024.10.1016/j.cell.2022.07.024PMC948027835985288Kwon H.-W., Lu T., Rützler M., Zwiebel L.J. Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA. 2006;103:13526–13531. doi: 10.1073/pnas.0601107103.10.1073/pnas.0601107103PMC156919616938890Hill S.R., Berry Smith J.J. Consistent pattern in the placement of taste sensilla on the labellar lobes of Aedes aegypti. Int. J. Insect Morphol. Embryol. 1999;28:281–290. doi: 10.1016/S0020-7322(99)00031-8.10.1016/S0020-7322(99)00031-8Sparks J.T., Dickens J.C. Electrophysiological responses of gustatory receptor neurons on the labella of the common malaria mosquito, Anopheles quadrimaculatus (Diptera: Culicidae) J. Med. Entomol. 2016;53:1148–1155. doi: 10.1093/jme/tjw073.10.1093/jme/tjw07327170738Baik L.S., Carlson J.R. The mosquito taste system and disease control. Proc. Natl. Acad. Sci. USA. 2020;117:32848–32856. doi: 10.1073/pnas.2013076117.10.1073/pnas.2013076117PMC777686933372129Dennis E.J., Goldman O.V., Vosshall L.B. Aedes aegypti mosquitoes use their legs to sense DEET on contact. Curr. Biol. 2019;29:1551–1556.e5. doi: 10.1016/j.cub.2019.04.004.10.1016/j.cub.2019.04.004PMC650458231031114Afify A., Betz J.F., Riabinina O., Lahondère C., Potter C.J. Commonly used insect repellents hide human odors from Anopheles mosquitoes. Curr. Biol. 2019;29:3669–3680.e5. doi: 10.1016/j.cub.2019.09.007.10.1016/j.cub.2019.09.007PMC683285731630950Hol F.J., Lambrechts L., Prakash M. BiteOscope, an open platform to study mosquito biting behavior. Elife. 2020;9 doi: 10.7554/eLife.56829.10.7554/eLife.56829PMC753592932960173Montell C. A taste of the Drosophila gustatory receptors. Curr. Opin. Neurobiol. 2009;19:345–353. doi: 10.1016/j.conb.2009.07.001.10.1016/j.conb.2009.07.001PMC274761919660932Bijma P. A general definition of the heritable variation that determines the potential of a population to respond to selection. Genetics. 2011;189:1347–1359. doi: 10.1534/genetics.111.130617.10.1534/genetics.111.130617PMC324141721926298Hoffmann A.A., Merilä J. Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol. Evol. 1999;14:96–101. doi: 10.1016/S0169-5347(99)01595-5.10.1016/S0169-5347(99)01595-510322508Zhao Z., Zung J.L., Hinze A., Kriete A.L., Iqbal A., Younger M.A., Matthews B.J., Merhof D., Thiberge S., Ignell R., et al. Mosquito brains encode unique features of human odour to drive host seeking. Nature. 2022;605:706–712. doi: 10.1038/s41586-022-04675-4.10.1038/s41586-022-04675-4PMC972575435508661Afify A., Potter C.J. Genetically encoded calcium indicators for functional imaging of mosquito olfactory neurons. Cold Spring Harb. Protoc. 2022;2022 doi: 10.1101/pdb.top107683. pdb.top107683.10.1101/pdb.top10768335960627Hammond A., Galizi R., Kyrou K., Simoni A., Siniscalchi C., Katsanos D., Gribble M., Baker D., Marois E., Russell S., et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 2016;34:78–83. doi: 10.1038/nbt.3439.10.1038/nbt.3439PMC491386226641531Konet D.S., Anderson J., Piper J., Akkina R., Suchman E., Carlson J. Short-hairpin RNA expressed from polymerase III promoters mediates RNA interference in mosquito cells. Insect Mol. Biol. 2007;16:199–206. doi: 10.1111/j.1365-2583.2006.00714.x.10.1111/j.1365-2583.2006.00714.x17298556Gratz S.J., Ukken F.P., Rubinstein C.D., Thiede G., Donohue L.K., Cummings A.M., O'Connor-Giles K.M. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics. 2014;196:961–971. doi: 10.1534/genetics.113.160713.10.1534/genetics.113.160713PMC398268724478335Lobo N.F., Clayton J.R., Fraser M.J., Kafatos F.C., Collins F.H. High efficiency germ-line transformation of mosquitoes. Nat. Protoc. 2006;1:1312–1317. doi: 10.1038/nprot.2006.221.10.1038/nprot.2006.22117406416Pondeville E., Puchot N., Meredith J.M., Lynd A., Vernick K.D., Lycett G.J., Eggleston P., Bourgouin C. Efficient ΦC31 integrase–mediated site-specific germline transformation of Anopheles gambiae. Nat. Protoc. 2014;9:1698–1712. doi: 10.1038/nprot.2014.117.10.1038/nprot.2014.11724945385Volohonsky G., Terenzi O., Soichot J., Naujoks D.A., Nolan T., Windbichler N., Kapps D., Smidler A.L., Vittu A., Costa G., et al. Tools for Anopheles gambiae transgenesis. G3. 2015;5:1151–1163. doi: 10.1534/g3.115.016808.10.1534/g3.115.016808PMC447854525869647Siju K.P., Hansson B.S., Ignell R. Immunocytochemical localization of serotonin in the central and peripheral chemosensory system of mosquitoes. Arthropod Struct. Dev. 2008;37:248–259. doi: 10.1016/j.asd.2007.12.001.10.1016/j.asd.2007.12.00118424232Poinapen D., Yoshizawa T., Zho Y., Charon N., Mou S., Oshima K., Wood L., Hruban R., Zbijewski W. Three-dimensional Shape and Topology Analysis of Tissue-Cleared Tumor Samples. Proc. SPIE 11603, Medical Imaging 2021: Digital Pathology 1160316. 10.1117/12.2582601.10.1117/12.2582601Kramer J.M., Staveley B.E. GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet. Mol. Res. 2003;2:43–47.12917801R Core Team . R Foundation for Statistical Computing; 2022. R: A Language and Environment for Statistical Computing.