Accelerated reactions in microdroplets have been reported for a wide range of reactions with some microdroplet reactions occurring over a million times faster than the same reaction in bulk solution. Unique chemistry at the air-water interface has been implicated as a primary factor for accelerated reaction rates, but the role of analyte concentration in evaporating droplets has not been as well studied. Here, theta-glass electrospray emitters and mass spectrometry are used to rapidly mix two solutions on the low to sub-microsecond time scale and produce aqueous nanodrops with different sizes and lifetimes. We demonstrate that for a simple bimolecular reaction where surface chemistry does not appear to play a role, reaction rate acceleration factors are between 10 and 10 for different initial solution concentrations, and these values do not depend on nanodrop size. A rate acceleration factor of 10 is among the highest reported and can be attributed to concentration of analyte molecules, initially far apart in dilute solution, but brought into close proximity in the nanodrop through evaporation of solvent from the nanodrops prior to ion formation. These data indicate that analyte concentration phenomenon is a significant factor in reaction acceleration where droplet volume throughout the experiment is not carefully controlled.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171075PMC
http://dx.doi.org/10.1039/d3sc00259dDOI Listing

Publication Analysis

Top Keywords

analyte concentration
12
role analyte
8
accelerated reaction
8
reaction rates
8
evaporating droplets
8
rate acceleration
8
reaction
6
concentration
4
concentration accelerated
4
rates evaporating
4

Similar Publications

Nontarget Analysis and Characterization of a Group of Abundant Polyfluoroalkyl Substances─Fluorinated Benzoylurea Pesticides and Their Analogues and Transformation Products in Fish by LC-HRMS and Chemical Species-Specific Algorithms.

J Agric Food Chem

January 2025

Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

Poly- and perfluoroalkyl substances (PFASs) are a large class of fluorinated chemicals used in various industrial and agrochemical products such as fluorinated benzoylurea (FBU) pesticides. Initiated from an incidental and preliminary finding of three high-abundance FBUs in fish, this study implemented nontarget analysis and characterization for FBUs together with their analogues and transformation products (TPs) in fish using liquid chromatography, high-resolution mass spectrometry, and chemical species-specific algorithms. A total of 23 FBU-relevant compounds were found and tentatively/accurately elucidated with structures, including 18 PFASs and 5 non-PFAS compounds, of which 4 were original FBUs, 8 were FBU analogues, and 11 were FBU-TPs.

View Article and Find Full Text PDF

Nanoplastics are suspected to pollute every environment on Earth, including very remote areas reached via atmospheric transport. We approached the challenge of measuring environmental nanoplastics by combining high-sensitivity TD-PTR-MS (thermal desorption-proton transfer reaction-mass spectrometry) with trained mountaineers sampling high-altitude glaciers ("citizen science"). Particles < 1 μm were analysed for common polymers (polyethylene, polyethylene terephthalate, polypropylene, polyvinyl chloride, polystyrene and tire wear particles), revealing nanoplastic concentrations ranging 2-80 ng mL at five of 14 sites.

View Article and Find Full Text PDF

Fine tuning enzyme activity assays for monitoring the enzymatic hydrolysis of PET.

Sci Rep

January 2025

Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.

Efficient monitoring of the enzymatic PET-hydrolysis is crucial for developing novel plastic-degrading biocatalysts. Herein, we aimed to upgrade in terms of accuracy the analytical methods useful for monitoring enzymatic PET-degradation. For the HPLC-based assessment, the incorporation of an internal standard within the analytic procedure enabled a more accurate quantification of the overall TPA content and the assessment of molar distributions and relative content of each aromatic degradation product.

View Article and Find Full Text PDF

Aims: Establishment of a protocol for routine single-molecule localisation microscopy (SMLM) imaging on formalin fixed paraffin embedded (FFPE) tissue using medical renal disease including minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS).

Methods: Protocol for normal and diseased renal FFPE tissue was developed to investigate the clinical diagnostic potential of SMLM. Antibody concentrations were determined for confocal microscopy and transferred to SMLM.

View Article and Find Full Text PDF

Herein, a novel spectrofluorometric sensor is proposed for the sensitive analysis of two nonfluorescent mucolytic drugs, namely, acetylcysteine (ACT) and carbocisteine (CST), utilizing the newly synthesized 2-[(2-hydroxyethyl)-(2,8,10-trimethylpyrido[2',3':3,4]pyrazolo[1,5-a]pyrimidin-4-yl)-amino]-ethanol as a fluorescence probe (Flu. Probe). This fluorophore exhibits fluorescence emission at 445 nm upon excitation at 275 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!