Idiopathic inflammatory myopathies (IIMs) are a group of acquired muscle diseases with muscle inflammation, weakness, and other extra-muscular manifestations. IIMs can significantly impact the quality of life, and management of IIMs often requires a multi-disciplinary approach. Imaging biomarkers have become an integral part of the management of IIMs. Magnetic resonance imaging (MRI), muscle ultrasound, electrical impedance myography (EIM), and positron emission tomography (PET) are the most widely used imaging technologies in IIMs. They can help make the diagnosis and assess the burden of muscle damage and treatment response. MRI is the most widely used imaging biomarker of IIMs and can assess a large volume of muscle tissue but is limited by availability and cost. Muscle ultrasound and EIM are easy to administer and can even be performed in the clinical setting, but they need further validation. These technologies may complement muscle strength testing and laboratory studies and provide an objective assessment of muscle health in IIMs. Furthermore, this is a rapidly progressing field, and new advances are going to equip care providers with a better objective assessment of IIMS and eventually improve patient management. This review discusses the current state and future direction of imaging biomarkers in IIMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166883 | PMC |
http://dx.doi.org/10.3389/fneur.2023.1146015 | DOI Listing |
Arch Dermatol Res
January 2025
Department of Dermatology, Faculty of Medicine, Fayoum University, Fayoum, Egypt.
Vitiligo is considered as depigmenting skin disorder where patches of skin losing their pigment. Lipocalin-2 (LCN2) is one of the Inflammatory adipokines that has a potential role in skin disorders and other inflammatory diseases as well. To measure the concentration level of LCN2 in vitiligo patients compared to healthy controls and to investigate its relation to disease activity and other clinical data to evaluate its role in the pathogenesis of the disease.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Background: Central synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), involve alpha-synuclein accumulation and dopaminergic cell loss in the substantia nigra (SN) and locus coeruleus (LC). Pure autonomic failure (PAF), a peripheral synucleinopathy, often precedes central synucleinopathies.
Objectives: To assess early brain involvement in PAF using neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and fluorodopa-positron emission tomography (FDOPA-PET), and to determine whether PAF patients with a high likelihood ratio (LR) for conversion to a central synucleinopathy exhibit reduced NM-MRI contrast in the LC and SN compared with controls and low-LR patients.
Thorac Cancer
January 2025
Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
Purpose: As microwave ablation continues to be used in patients with inoperable stage I non-small cell lung cancer (NSCLC), it is particularly important to monitor efficacy. Whether plasma ctDNA detection can predict its efficacy should be illustrated.
Methods: We recruited 43 patients with inoperative stage I NSCLC, all of whom underwent biopsy-synchronous microwave ablation (MWA).
Mult Scler
January 2025
Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Spinal cord (SC) atrophy is a key imaging biomarker of progressive multiple sclerosis (MS). Progressive MS is more common in men and postmenopausal women.
Objective: Investigate the impact of sex and menopause on SC measurements in persons with MS (pwMS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!