In Situ Sonoactivation of Polycrystalline Ni for the Hydrogen Evolution Reaction in Alkaline Media.

ACS Appl Energy Mater

Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway.

Published: May 2023

In this investigation, we report on the development of a method for activating polycrystalline metallic nickel (Ni(poly)) surfaces toward the hydrogen evolution reaction (HER) in N-saturated 1.0 M KOH aqueous electrolyte through continuous and pulsed ultrasonication (24 kHz, 44 ± 1.40 W, 60% acoustic amplitude, ultrasonic horn). It is found that ultrasonically activated Ni shows an improved HER activity with a much lower overpotential of -275 mV vs RHE at -10.0 mA cm when compared to nonultrasonically activated Ni. It was observed that the ultrasonic pretreatment is a time-dependent process that gradually changes the oxidation state of Ni and longer ultrasonication times result in higher HER activity as compared to untreated Ni. This study highlights a straightforward strategy for activating nickel-based materials by ultrasonic treatment for the electrochemical water splitting reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170477PMC
http://dx.doi.org/10.1021/acsaem.2c02443DOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
8
evolution reaction
8
situ sonoactivation
4
sonoactivation polycrystalline
4
polycrystalline hydrogen
4
reaction alkaline
4
alkaline media
4
media investigation
4
investigation report
4
report development
4

Similar Publications

Establishing optimized metal-support interaction (MSI) between active sites and the substrate is essential for modulating the adsorption properties of key reaction intermediates during catalysis, thereby enhancing the catalytic performance. In this study, catalyst composites with varying degrees of MSI are constructed using ruthenium (Ru) and different carbon nanotubes, and their performance for alkaline hydrogen evolution reaction (HER) is systematically investigated. Detailed kinetic assessments reveal that catalysts with a strong MSI exhibit superior HER activity.

View Article and Find Full Text PDF

Tuning Fork Scanning Electrochemical Cell Microscopy for Resolving Morphological and Redox Properties of Single Ag Nanowires.

J Phys Chem Lett

January 2025

Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States.

We report a Tuning Fork Scanning Electrochemical Cell Microscopy (TF-SECCM) technique for providing morphological and electrochemical information on single redox-active entities. This new operation configuration of SECCM utilizes an electrolyte-filled nanopipette tip mounted onto a tuning fork force sensor to obtain a precise tip-sample distance control and surface morphological mapping capabilities. Redox activities of regions of interest (ROIs) can be investigated by scanning electrode potential by moving the nanopipette to any target regions while maintaining the constant force engagement of the tip with the sample.

View Article and Find Full Text PDF

Modulation of RuO Nanocrystals with Facile Annealing Method for Enhancing the Electrocatalytic Activity on Overall Water Splitting in Acid Solution.

Adv Sci (Weinh)

January 2025

Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemical and Chemical Engineering, Shantou University, Shantou, 515041, P. R. China.

RuO-based materials are considered an important kind of electrocatalysts on oxygen evolution reaction and water electrolysis, but the reported discrepancies of activities exist among RuO electrocatalysts prepared via different processes. Herein, a highly efficient RuO catalysts via a facile hydrolysis-annealing approach is reported for water electrolysis. The RuO catalyst dealt with at 200 °C (RuO-200) performs the highest activities on both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acid with overpotentials of 200 mV for OER and 66 mV for HER to reach a current density of 100 mA cm as well as stable operation for100 h.

View Article and Find Full Text PDF

Photoinduced Cobaloxime-Catalyzed Regio- and Diastereoselective Hydrogen-Evolution C(sp)-H Phosphorylation of Bicyclo[1.1.0]butanes.

Org Lett

January 2025

Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.

Radical-initiated functionalization of bicyclo[1.1.0]butanes (BCBs) is a straightforward approach to accessing diverse cyclobutane derivatives.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!