Evaluating the efficacy and cardiotoxicity of EGFR-TKI AC0010 with a novel multifunctional biosensor.

Microsyst Nanoeng

Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027 China.

Published: May 2023

AI Article Synopsis

  • Non-small cell lung cancer (NSCLC) is a major cause of cancer deaths, and while EGFR-TKIs have improved patient survival, concerns grow about their potential heart-related side effects.
  • A novel third-generation TKI, AC0010, aims to target drug resistance from the EGFR-T790M mutation, but its effects on heart cells are still uncertain.
  • Using a new multifunctional biosensor, researchers found that AC0010 effectively inhibited EGFR-mutant NSCLC cells but also negatively impacted the function of cardiomyocytes, indicating possible cardiotoxicity at low concentrations.

Article Abstract

Non-small cell lung cancer (NSCLC) is a leading cause of cancer mortality worldwide. Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have dramatically improved the life expectancy of patients with NSCLC, concerns about TKI-induced cardiotoxicities have increased. AC0010, a novel third-generation TKI, was developed to overcome drug resistance induced by EGFR-T790M mutation. However, the cardiotoxicity of AC0010 remains unclear. To evaluate the efficacy and cardiotoxicity of AC0010, we designed a novel multifunctional biosensor by integrating microelectrodes (MEs) and interdigital electrodes (IDEs) to comprehensively evaluate cell viability, electrophysiological activity, and morphological changes (beating of cardiomyocytes). The multifunctional biosensor can monitor AC0010-induced NSCLC inhibition and cardiotoxicity in a quantitative, label-free, noninvasive, and real-time manner. AC0010 was found to significantly inhibit NCI-H1975 (EGFR-L858R/T790M mutation), while weak inhibition was found for A549 (wild-type EGFR). Negligible inhibition was found in the viabilities of HFF-1 (normal fibroblasts) and cardiomyocytes. With the multifunctional biosensor, we found that 10 μM AC0010 significantly affected the extracellular field potential (EFP) and mechanical beating of cardiomyocytes. The amplitude of EFP continuously decreased after AC0010 treatment, while the interval decreased first and then increased. We analyzed the change in the systole time (ST) and diastole time (DT) within a beating interval and found that the DT and DT/beating interval rate decreased within 1 h after AC0010 treatment. This result probably indicated that the relaxation of cardiomyocytes was insufficient, which may further aggravate the dysfunction. Here, we found that AC0010 significantly inhibited EGFR-mutant NSCLC cells and impaired cardiomyocyte function at low concentrations (10 μM). This is the first study in which the risk of AC0010-induced cardiotoxicity was evaluated. In addition, novel multifunctional biosensors can comprehensively evaluate the antitumor efficacy and cardiotoxicity of drugs and candidate compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10172296PMC
http://dx.doi.org/10.1038/s41378-023-00493-4DOI Listing

Publication Analysis

Top Keywords

multifunctional biosensor
16
efficacy cardiotoxicity
12
novel multifunctional
12
ac0010
9
ac0010 novel
8
cardiotoxicity ac0010
8
comprehensively evaluate
8
beating cardiomyocytes
8
cardiomyocytes multifunctional
8
ac0010 treatment
8

Similar Publications

We synthesized rigid, macromolecular brushes with well-defined and quantized brush lengths on a gold nanoparticle substrate by using a macromolecular "grafting from" approach. The macromonomers used in these brushes were thiol- and maleimide-functionalized peptide coiled coil "bundlemers" that fold into discrete 4 nm × 2 nm (length × diameter) cylindrical nanoparticles. With each added peptide macromonomer layer, brush thickness increased by approximately the length of a single bundlemer nanoparticle.

View Article and Find Full Text PDF

Urchin-like magnetic nanoparticles loaded with type X collagen siRNA and Stattic to treat triple negative breast cancer under rotating magnetic field like an "enchanted micro-scalpel".

Int J Biol Macromol

January 2025

Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, PR China. Electronic address:

Magnetic nanoparticles effectively target drug delivery, contrast agents, biosensors, and more. Urchin-like magnetic nanoparticles (UMN) with abundant spike-like structures exhibit superior magneto-mechanical force to destroy tumor cells compared with other shapes of magnetic nanoparticles. However, when cell contents are released from tumor cells induced by magneto-mechanical force, they can act on surrounding tumor cells to facilitate tumor development.

View Article and Find Full Text PDF

The increasing demand for smart agriculture has led to the development of agricultural sensor technology. Wearable sensors show great potential for monitoring the physiological and surrounding environmental information for plants due to their high flexibility, biocompatibility, and scalability. However, wearable sensors for plants face several challenges that hinder their large-scale practical application.

View Article and Find Full Text PDF

Next-Generation Potentiometric Sensors: A Review of Flexible and Wearable Technologies.

Biosensors (Basel)

January 2025

Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA.

In recent years, the field of wearable sensors has undergone significant evolution, emerging as a pivotal topic of research due to the capacity of such sensors to gather physiological data during various human activities. Transitioning from basic fitness trackers, these sensors are continuously being improved, with the ultimate objective to make compact, sophisticated, highly integrated, and adaptable multi-functional devices that seamlessly connect to clothing or the body, and continuously monitor bodily signals without impeding the wearer's comfort or well-being. Potentiometric sensors, leveraging a range of different solid contact materials, have emerged as a preferred choice for wearable chemical or biological sensors.

View Article and Find Full Text PDF

Recent Progress in Self-Healing Triboelectric Nanogenerators for Artificial Skins.

Biosensors (Basel)

January 2025

Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China.

Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!