Corneal disease is a leading cause of blindness globally that stems from various etiologies. High-throughput platforms that can generate substantial quantities of corneal grafts will be invaluable in addressing the existing global demand for keratoplasty. Slaughterhouses generate substantial quantities of underutilized biological waste that can be repurposed to reduce current environmentally unfriendly practices. Such efforts to support sustainability can simultaneously drive the development of bioartificial keratoprostheses. Scores of discarded eyes from the prominent Arabian sheep breeds in our surrounding region of the United Arab Emirates (UAE) were repurposed to generate native and acellular corneal keratoprostheses. Acellular corneal scaffolds were created using a whole-eye immersion/agitation-based decellularization technique with a widely available, eco-friendly, and inexpensive 4% zwitterionic biosurfactant solution (Ecover, Malle, Belgium). Conventional approaches like DNA quantification, ECM fibril organization, scaffold dimensions, ocular transparency and transmittance, surface tension measurements, and Fourier-transform infrared (FTIR) spectroscopy were used to examine corneal scaffold composition. Using this high-throughput system, we effectively removed over 95% of the native DNA from native corneas while retaining the innate microarchitecture that supported substantial light transmission (over 70%) after reversing opacity, a well-established hallmark of decellularization and long-term native corneal storage, with glycerol. FTIR data revealed the absence of spectral peaks in the frequency range 2849 cm to 3075 cm, indicating the effective removal of the residual biosurfactant post-decellularization. Surface tension studies confirmed the FTIR data by capturing the surfactant's progressive and effectual removal through tension measurements ranging from approximately 35 mN/m for the 4% decellularizing agent to 70 mN/m for elutes highlighting the effective removal of the detergent. To our knowledge, this is the first dataset to be generated outlining a platform that can produce dozens of ovine acellular corneal scaffolds that effectively preserve ocular transparency, transmittance, and ECM components using an eco-friendly surfactant. Analogously, decellularization technologies can support corneal regeneration with attributes comparable to native xenografts. Thus, this study presents a simplified, inexpensive, and scalable high-throughput corneal xenograft platform to support tissue engineering, regenerative medicine, and circular economic sustainability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168539 | PMC |
http://dx.doi.org/10.3389/fbioe.2023.1133122 | DOI Listing |
Prog Retin Eye Res
December 2024
Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland. Electronic address:
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs).
View Article and Find Full Text PDFJ Morphol
December 2024
Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain.
The cornea is the transparent part of the eye's outer sheath and the primary refractive element in the optical system of all vertebrates allowing light to focus on the central part of the retina. Maintenance of its curvature and clarity is therefore essential, providing a smooth optical surface and a protective goggle to ensure a focused image on the retina. However, the corneas of birds have been largely overlooked and the structures and mechanisms controlling corneal shape and hence visual acuity remain unknown.
View Article and Find Full Text PDFCornea Open
September 2024
Department of Ophthalmology, California Pacific Medical Center, San Francisco, CA, USA.
Purpose: Multicentric osteolysis nodulosis and arthropathy (MONA) syndrome is a rare autosomal recessive skeletal dysplasia. Caused by mutations in the matrix metalloproteinase 2 gene () on chromosome 16q12, this syndrome has infrequently been associated with ophthalmic manifestations. Corneal opacities have been reported but not described or documented in detail.
View Article and Find Full Text PDFBMC Ophthalmol
November 2024
Department of Ophthalmology, Chiayi Chang Gung Memorial Hospital, No.6., Jiapu Rd, Chiayi, Puxih City, 613016, Chiayi County, Taiwan.
Background: To present a case of conjunctival growth on the amniotic membrane and subsequent pathology revealing conjunctival squamous metaplasia in a patient with Stevens-Johnson syndrome.
Case Presentation: A 21-year-old female presented with painful, blurred vision in both eyes for two weeks. She was diagnosed with Stevens-Johnson syndrome 5 weeks before.
Cornea
October 2024
Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!