Carbon anions formed the addition of Grignard reagents to -vinyl phosphinates were modified with electrophilic reagents to afford organophosphorus compounds with diverse carbon skeletons. The electrophiles included acids, aldehydes, epoxy groups, chalcogens and alkyl halides. When alkyl halides were used, bis-alkylated products were afforded. Substitution reactions or polymerization occurred when the reaction was applied to vinyl phosphine oxides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167796 | PMC |
http://dx.doi.org/10.1039/d3ra02409a | DOI Listing |
Molecules
December 2024
Laboratoire de Chimie de Coordination, CNRS, Toulouse-INP, Université de Toulouse, 31000 Toulouse, France.
In recent years, there has been growing interest in the development of greener alternatives to traditional reagents used in carbon-carbon coupling reactions, particularly in response to environmental concerns. The commonly used aryl halides, despite being highly reactive in the Suzuki-Miyaura coupling (SMC), pose significant environmental risks. As a result, research has shifted towards exploring the use of phenols, which are widely accessible and environmentally benign.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Aryl triflates make up a class of aryl electrophiles that are available in a single step from the corresponding phenol. Despite the known reactivity of nickel complexes for aryl C-O bond activation of phenol derivatives, nickel-catalyzed cross-electrophile coupling using aryl triflates has proven challenging. Herein, we report a method to form C(sp)-C(sp) bonds by coupling aryl triflates with alkyl bromides and chlorides using phenanthroline (phen) or pyridine-2,6-bis(-cyanocarboxamidine) (PyBCam)-ligated nickel catalysts.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Osaka University: Osaka Daigaku, Department of Applied Chemistry, JAPAN.
Although numerous transition-metal catalyzed cross-coupling reactions of alkenyl electrophiles with a sulfur(VI) leaving group, mainly alkenyl sulfones, have been developed, most rely heavily on highly nucleophilic Grignard reagents, and the use of organoboron reagents remains challenging. We report herein facile preparation and the following Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of alkenyl sulfoximine, a monoaza analog of sulfone. The condensation of alkyl sulfoximine with aldehydes, developed in this study, makes alkenyl sulfoximines more readily available.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
We have developed transition-metal-free synthetic methodologies for dibenzoxazepinones utilizing salicylamides as starting materials and employing two distinct types of successive hypervalent iodine-mediated arylocyclizations. This synthetic protocol encompasses selective phenol -arylation of salicylamides with diaryliodonium salts, followed by electrophilic aromatic amination utilizing chemically or electronically generated hypervalent iodine reagents in the second stage of the process.
View Article and Find Full Text PDFTetrahedron Lett
October 2024
Department of Chemistry, University of California, Berkeley, CA 94720, USA.
Neutral dual hydrogen bond donors (HBDs) are effective catalysts that enhance the electrophilicity of substrates or the Lewis/Brønsted acidity of reagents through an anion-binding mechanism. Despite their success in various enantioselective organocatalytic reactions, their application to transition metal catalysis remains rare. Herein, we report the activation of gold(I) precatalysts by chiral ureas, leading to enantioselective hydroarylation of allenes with indoles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!