A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic bolus tracking in abdominal CT scans with convolutional neural networks. | LitMetric

Automatic bolus tracking in abdominal CT scans with convolutional neural networks.

Quant Imaging Med Surg

Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.

Published: May 2023

Background: Bolus tracking can optimize the time delay between contrast injection and diagnostic scan initiation in contrast-enhanced computed tomography (CT), yet the procedure is time-consuming and subject to inter- and intra-operator variances which affect the enhancement levels in diagnostic scans. The objective of the current study is to use artificial intelligence algorithms to fully automate the bolus tracking procedure in contrast-enhanced abdominal CT exams for improved standardization and diagnostic accuracy while providing a simplified imaging workflow.

Methods: This retrospective study used abdominal CT exams collected under a dedicated Institutional Review Board (IRB). Input data consisted of CT topograms and images with high heterogeneity in terms of anatomy, sex, cancer pathologies, and imaging artifacts acquired with four different CT scanner models. Our method consisted of two sequential steps: (I) automatic locator scan positioning on topograms, and (II) automatic region-of-interest (ROI) positioning within the aorta on locator scans. The task of locator scan positioning is formulated as a regression problem, where the limited amount of annotated data is circumvented using transfer learning. The task of ROI positioning is formulated as a segmentation problem.

Results: Our locator scan positioning network offered improved positional consistency compared to a high degree of variance in manual slice positionings, verifying inter-operator variance as a significant source of error. When trained using expert-user ground-truth labels, the locator scan positioning network achieved a sub-centimeter error (9.76±6.78 mm) on a test dataset. The ROI segmentation network achieved a sub-millimeter absolute error (0.99±0.66 mm) on a test dataset.

Conclusions: Locator scan positioning networks offer improved positional consistency compared to manual slice positionings and verified inter-operator variance as an important source of error. By significantly reducing operator-related decisions, this method opens opportunities to standardize and simplify the workflow of bolus tracking procedures for contrast-enhanced CT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167470PMC
http://dx.doi.org/10.21037/qims-22-686DOI Listing

Publication Analysis

Top Keywords

locator scan
20
scan positioning
20
bolus tracking
16
abdominal exams
8
roi positioning
8
positioning formulated
8
positioning network
8
improved positional
8
positional consistency
8
consistency compared
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!