A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolic cost of osmoregulation by the gastro-intestinal tract in marine teleost fish. | LitMetric

Although dozens of studies have attempted to determine the metabolic cost of osmoregulation, mainly by comparing standard metabolic rates (SMR) in fish acclimated to different salinities, consensus is still lacking. In the present study, using the Gulf toadfish, , we aimed to determine the metabolic cost of esophageal and intestinal osmoregulatory processes by estimating ATP consumption from known ion transport rates and pathways and comparing these estimates with measurements on isolated tissues. Further, we performed whole animal respirometry on fish acclimated to 9, 34 and 60 ppt. Our theoretical estimates of esophageal and intestinal osmoregulatory costs were in close agreement with direct measurements on isolated tissues and suggest that osmoregulation by these tissues amounts to ∼2.5% of SMR. This value agrees well with an earlier attempt to estimate osmoregulation cost from ion transport rates and combined with published measurements of gill osmoregulatory costs suggests that whole animal costs of osmoregulation in marine teleosts is ∼7.5% of SMR. As in many previous studies, our whole animal measurements were variable between fish and did not seem suited to determine osmoregulatory costs. While the esophagus showed constant metabolic rate regardless of acclimation salinity, the intestine of fish acclimated to higher salinities showed elevated metabolic rates. The esophagus and the intestine had 2.1 and 3.2-fold higher metabolic rates than corresponding whole animal mass specific rates, respectively. The intestinal tissue displays at least four different Cl uptake pathways of which the Na:Cl:2 K (NKCC) pathway accounts for 95% of the Cl uptake and is the most energy efficient. The remaining pathways are apical anion exchange and seem to primarily serve luminal alkalinization and the formation of intestinal CaCO which is essential for water absorption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169748PMC
http://dx.doi.org/10.3389/fphys.2023.1163153DOI Listing

Publication Analysis

Top Keywords

metabolic cost
12
metabolic rates
12
fish acclimated
12
osmoregulatory costs
12
cost osmoregulation
8
determine metabolic
8
esophageal intestinal
8
intestinal osmoregulatory
8
ion transport
8
transport rates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!