Machine learning (ML) refers to computer algorithms that predict a meaningful output or categorize complex systems based on a large amount of data. ML is applied in various areas including natural science, engineering, space exploration, and even gaming development. This review focuses on the use of machine learning in the field of chemical and biological oceanography. In the prediction of global fixed nitrogen levels, partial carbon dioxide pressure, and other chemical properties, the application of ML is a promising tool. Machine learning is also utilized in the field of biological oceanography to detect planktonic forms from various images (i.e., microscopy, FlowCAM, and video recorders), spectrometers, and other signal processing techniques. Moreover, ML successfully classified the mammals using their acoustics, detecting endangered mammalian and fish species in a specific environment. Most importantly, using environmental data, the ML proved to be an effective method for predicting hypoxic conditions and harmful algal bloom events, an essential measurement in terms of environmental monitoring. Furthermore, machine learning was used to construct a number of databases for various species that will be useful to other researchers, and the creation of new algorithms will help the marine research community better comprehend the chemistry and biology of the ocean.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173431 | PMC |
http://dx.doi.org/10.1021/acsomega.2c06441 | DOI Listing |
Med Phys
January 2025
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.
Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.
Behav Res Methods
January 2025
CAP Team, Centre de Recherche en Neurosciences de Lyon - INSERM U1028 - CNRS UMR 5292 - UCBL - UJM, 95 Boulevard Pinel, 69675, Bron, France.
J Imaging Inform Med
January 2025
Department of Orthopedic Surgery, Arrowhead Regional Medical Center, Colton, CA, USA.
Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Software Convergence, Seoul Women's University, Hwarango 621, Nowongu, Seoul, 01797, Republic of Korea.
In this paper, we propose a method to address the class imbalance learning in the classification of focal liver lesions (FLLs) from abdominal CT images. Class imbalance is a significant challenge in medical image analysis, making it difficult for machine learning models to learn to classify them accurately. To overcome this, we propose a class-wise combination of mixture-based data augmentation (CCDA) method that uses two mixture-based data augmentation techniques, MixUp and AugMix.
View Article and Find Full Text PDFFront Optoelectron
January 2025
Institute of Physics, Saratov State University, Saratov, 410012, Russia.
The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!