Transcription factor IIH (TFIIH) is a protein assembly essential for transcription initiation and nucleotide excision repair (NER). Yet, understanding of the conformational switching underpinning these diverse TFIIH functions remains fragmentary. TFIIH mechanisms critically depend on two translocase subunits, XPB and XPD. To unravel their functions and regulation, we build cryo-EM based TFIIH models in transcription- and NER-competent states. Using simulations and graph-theoretical analysis methods, we reveal TFIIH's global motions, define TFIIH partitioning into dynamic communities and show how TFIIH reshapes itself and self-regulates depending on functional context. Our study uncovers an internal regulatory mechanism that switches XPB and XPD activities making them mutually exclusive between NER and transcription initiation. By sequentially coordinating the XPB and XPD DNA-unwinding activities, the switch ensures precise DNA incision in NER. Mapping TFIIH disease mutations onto network models reveals clustering into distinct mechanistic classes, affecting translocase functions, protein interactions and interface dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183003PMC
http://dx.doi.org/10.1038/s41467-023-38416-6DOI Listing

Publication Analysis

Top Keywords

xpb xpd
12
conformational switching
8
tfiih
8
transcription initiation
8
dynamic conformational
4
switching underlies
4
underlies tfiih
4
tfiih function
4
transcription
4
function transcription
4

Similar Publications

Article Synopsis
  • * Researchers combined techniques like cryo-electron microscopy (cryo-EM), crosslinking mass spectrometry (XL-MS), and AlphaFold2 predictions to create a model of the NER pre-incision complex (PInC), highlighting how proteins interact during DNA repair.
  • * The study reveals new insights into how specific proteins (like TFIIH, XPG, and XPF) coordinate their actions, affects DNA binding, and provides explanations for disease-causing mutations related to xeroderma pigmentosum and Cockayne syndrome.
View Article and Find Full Text PDF

Xeroderma pigmentosum (XP) results from biallelic mutations in any of eight genes involved in DNA repair systems, thus defining eight different genotypes (XPA, XPB, XPC, XPD, XPE, XPF, XPG and XP variant or XPV). In addition to cutaneous and ophthalmological features, some patients present with XP neurological disease. It is unknown whether the different neurological signs and their progression differ among groups.

View Article and Find Full Text PDF

TFIIH central activity in nucleotide excision repair to prevent disease.

DNA Repair (Amst)

December 2023

Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands. Electronic address:

The heterodecameric transcription factor IIH (TFIIH) functions in multiple cellular processes, foremost in nucleotide excision repair (NER) and transcription initiation by RNA polymerase II. TFIIH is essential for life and hereditary mutations in TFIIH cause the devastating human syndromes xeroderma pigmentosum, Cockayne syndrome or trichothiodystrophy, or combinations of these. In NER, TFIIH binds to DNA after DNA damage is detected and, using its translocase and helicase subunits XPB and XPD, opens up the DNA and checks for the presence of DNA damage.

View Article and Find Full Text PDF

Helicases required for nucleotide excision repair: structure, function and mechanism.

Enzymes

November 2023

Department of Biochemistry, University of California, Riverside, CA, United States. Electronic address:

Nucleotide excision repair (NER) is a major DNA repair pathway conserved from bacteria to humans. Various DNA helicases, a group of enzymes capable of separating DNA duplex into two strands through ATP binding and hydrolysis, are required by NER to unwind the DNA duplex around the lesion to create a repair bubble and for damage verification and removal. In prokaryotes, UvrB helicase is required for repair bubble formation and damage verification, while UvrD helicase is responsible for the removal of the excised damage containing single-strand (ss) DNA fragment.

View Article and Find Full Text PDF

Transcription factor IIH (TFIIH) is a protein assembly essential for transcription initiation and nucleotide excision repair (NER). Yet, understanding of the conformational switching underpinning these diverse TFIIH functions remains fragmentary. TFIIH mechanisms critically depend on two translocase subunits, XPB and XPD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!