Production and therapeutic use of astaxanthin in the nanotechnology era.

Pharmacol Rep

Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.

Published: August 2023

Astaxanthin (AXT) is a red fat-soluble pigment found naturally in aquatic animals, plants, and various microorganisms and can be manufactured artificially using chemical catalysis. AXT is a xanthophyll carotenoid with a high potential for scavenging free radicals. Several studies have investigated AXT efficacy against diseases such as neurodegenerative, ocular, skin, and cardiovascular hypertension, diabetes, gastrointestinal and liver diseases, and immuno-protective functions. However, its poor solubility, low stability to light and oxygen, and limited bioavailability are major obstacles hindering its wide applications as a therapeutic agent or nutritional supplement. Incorporating AXT with nanocarriers holds great promise in enhancing its physiochemical properties. Nanocarriers are delivery systems with several benefits, including surface modification, bioactivity, and targeted medication delivery and release. Many approaches have been applied to enhance AXT's medicinal effect, including solid lipid nanoparticles, nanostructured lipid carriers (NLCs) and polymeric nanospheres. AXT nano-formulations have demonstrated a high antioxidant and anti-inflammatory effect, significantly affecting cancer in different organs. This review summarizes the most recent data on AXT production, characterization, biological activity, and therapeutic usage, focusing on its uses in the nanotechnology era.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182848PMC
http://dx.doi.org/10.1007/s43440-023-00488-yDOI Listing

Publication Analysis

Top Keywords

nanotechnology era
8
axt
6
production therapeutic
4
therapeutic astaxanthin
4
astaxanthin nanotechnology
4
era astaxanthin
4
astaxanthin axt
4
axt red
4
red fat-soluble
4
fat-soluble pigment
4

Similar Publications

Graphene is the first 2D atomic crystal, and its isolation heralded a new era in materials science with the emergence of several other atomically thin materials displaying multifunctional properties. The safety assessment of new materials is often something of an afterthought, but in the case of graphene, the initial isolation and characterization of the material was soon followed by the assessment of its potential impact on living systems. The Graphene Flagship project addressed the health and environmental aspects of graphene and other 2D materials, providing an instructive lesson in interdisciplinarity - from materials science to biology.

View Article and Find Full Text PDF

Platanus occidentalis L. fruit-derived carbon materials for electrochemical potassium storage.

Nanotechnology

January 2025

Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability.

View Article and Find Full Text PDF

Ongoing research and development efforts are currently focused on creating COVID-19 vaccines using a variety of platforms. Among these, mRNA technology stands out as a cuttingedge method for vaccine development. There is a growing public awareness of mRNA and its potential in vaccine development.

View Article and Find Full Text PDF

Recent advances in nanotherapy-based treatment of epilepsy.

Colloids Surf B Biointerfaces

January 2025

General Hospital of Northern Theater Command, Liaoning 110016, China. Electronic address:

Epilepsy is a complex neurological disorder characterized by recurrent seizures affecting millions of people worldwide. Despite advances in drug therapy, a significant proportion of patients remain resistant to conventional antiepileptic drugs (AEDs) due to challenges such as impermeability of the blood-brain barrier (BBB), multidrug resistance, and multifaceted epileptogenesis. Nanotechnology offers promising strategies to overcome these barriers by enhancing drug delivery across the BBB, improving target specificity and minimizing systemic side effects.

View Article and Find Full Text PDF

In the current era of nanotechnology, the isolation of graphene has acted as a catalyst for the study and creation of many innovative two-dimensional (2D) materials with distinctive functions. The recent synthesis of biphenylene (BPN), a porous 2D carbon allotrope, has ignited significant research interest due to its unique and tunable properties, making it a promising candidate for diverse applications in hydrogen storage, batteries, sensing, electrocatalysis, and beyond. Although a considerable amount of research has been carried out on biphenylene, there is hardly any review article on this fascinating material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!