Immobilization of lipase on hydrophobic MOF synthesized simultaneously with oleic acid and application in hydrolysis of natural oils for improving unsaturated fatty acid production.

Int J Biol Macromol

State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China.

Published: July 2023

The hydrolysis of natural oils (vegetable oils and fats) by lipase has significant applications in food and medicine. However, free lipases are usually sensitive to temperature, pH and chemical reagents in aqueous solutions, which hinders their widespread industrial application. Excitingly, immobilized lipases have been widely reported to overcome these problems. Herein, inspired by lipase interface activation, a hydrophobic Zr-MOF (UiO-66-NH-OA) with oleic acid was synthesized for the first time in an emulsion consisting of oleic acid and water, and the Aspergillus oryzae lipase (AOL) was immobilized onto the UiO-66-NH-OA through hydrophobic interaction and electrostatic interaction to obtain immobilized lipase (AOL/UiO-66-NH-OA). H NMR and FT-IR data indicated that oleic acid was conjugated with the 2-amino-1,4-benzene dicarboxylate (BDC-NH) by amidation reaction. As a result, the V and K values of AOL/UiO-66-NH-OA were 179.61 μM﹒min and 8.27 s, which were 8.56 and 12.92 times higher than those of the free enzyme, respectively, due to the interfacial activation. After treated at 70 °C for 120 min, the immobilized lipase maintained 52 % of its original activity, but free AOL only retained 15 %. Significantly, the yield of fatty acids by the immobilized lipase reached 98.3 % and still exceeded 82 % after seven times of recycling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.124807DOI Listing

Publication Analysis

Top Keywords

oleic acid
16
immobilized lipase
12
hydrolysis natural
8
natural oils
8
lipase
6
acid
5
immobilized
5
immobilization lipase
4
lipase hydrophobic
4
hydrophobic mof
4

Similar Publications

: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.

View Article and Find Full Text PDF

Rapeseed ( L.) is one of the four major oilseed crops in the world and is rich in fatty acids. Changes in the fatty acid composition affect the quality of rapeseed.

View Article and Find Full Text PDF

Marine organisms, including shrimps, have gained research interest due to containing an abundance of bioactive lipid molecules.This study evaluated the composition and the in vitro biological activities of amphiphilic bioactive compounds from four different wild shrimp species: , , , and . Total lipid (TL) extracts were obtained from shrimp and separated into total amphiphilic (TAC) and total lipophilic (TLC) compounds.

View Article and Find Full Text PDF

The genus Amsonia, a member of the Apocynaceae family, comprises plants with notable medicinal benefits. In 2022 and 2023, Walt. seeds introduced to Bulgaria were collected and analyzed.

View Article and Find Full Text PDF

Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) have emerged as extraordinary bioactive lipids, exhibiting diverse bioactivities, from the enhancement of insulin secretion and the optimization of blood glucose absorption to anti-inflammatory effects. The intricate nature of FAHFAs' structure reflects a synthetic challenge that requires the strategic introduction of ester bonds along the hydroxy fatty acid chain. Our research seeks to create an effective methodology for generating varied FAHFA derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!