Purpose: To test the hypothesis that antitumoral immunity can be induced after cryoablation (cryo) of hepatocellular carcinoma (HCC) through coadministration of the immunostimulant CpG and an immune checkpoint (programmed cell death 1 [PD-1]) inhibitor.
Materials And Methods: Sixty-three immunocompetent C57BL/6J mice were generated with 2 orthotopic HCC tumor foci: 1 for treatment and 1 to observe for antitumoral immunity. Tumors were treated with incomplete cryo alone or intratumoral CpG and/or a PD-1 inhibitor. The primary endpoint was death or when the following criteria for sacrifice were met: tumor > 1 cm (determined using ultrasound) or moribund state. Antitumoral immunity was assessed using flow cytometry and histology (tumor and liver) as well as enzyme-linked immunosorbent assay (serum). Analysis of variance was used for statistical comparisons.
Results: At 1 week, the nonablated satellite tumor growth was reduced by 1.9-fold (P = .047) in the cryo + CpG group and by 2.8-fold (P = .007) in the cryo + CpG + PD-1 group compared with that in the cryo group. Compared with cryo alone, the time to tumor progression to endpoints was also prolonged for cryo + CpG + PD-1 and cryo + CpG mice, with log-rank hazard ratios of 0.42 (P = .031) and 0.27 (P < .001), respectively. Flow cytometry and histology showed increased cytotoxic T-cell infiltration (P = .002) and serum levels of the proinflammatory cytokine interferon-γ (P = .015) in tumors and serum of cryo + CpG mice compared with those in tumors and serum of mice treated with cryo alone. High serum levels of the anti-inflammatory cytokine tumor growth factor-β and the proangiogenesis chemokine C-X-C motif chemokine ligand 1 were correlated with a shorter time to endpoints and faster tumor growth.
Conclusions: Cryo combined with the immunostimulant CpG promoted cytotoxic T-cell infiltration into tumors, slowed tumor growth, and prolonged the time to progression to endpoints in an aggressive murine HCC model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852103 | PMC |
http://dx.doi.org/10.1016/j.jvir.2023.05.008 | DOI Listing |
Cancer Immunol Res
January 2025
University of Chicago, Chicago, IL, United States.
Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China.
Background: In several studies of head and neck squamous cell carcinoma (HNSC), the regulation of tumorigenesis and therapeutic sensitivity by pyroptosis has been observed. However, a systematic analysis of gasdermin family members (GSDMs, including GSDMA/B/C/D/E and PJVK), which are deterministic executors of pyroptosis, has not yet been reported in HNSC.
Methods: We performed comprehensive analyses of the expression profile, prognostic value, regulatory network, and immune infiltration modulation of GSDMs in HNSC on the basis of a computational approach and bioinformatic analysis of publicly available datasets.
Acta Pharm Sin B
December 2024
School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
Specific tumor-targeted gene delivery remains an unsolved therapeutic issue due to aberrant vascularization in tumor microenvironment (TME). Some bacteria exhibit spontaneous chemotaxis toward the anaerobic and immune-suppressive TME, which makes them ideal natural vehicles for cancer gene therapy. Here, we conjugated ZIF-8 metal-organic frameworks encapsulating eukaryotic murine interleukin 2 () expression plasmid onto the surface of VNP20009, an attenuated strain with well-documented anti-cancer activity, and constructed a TME-targeted delivery system named /ZIF-8@.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
In situ tumor vaccines, which utilize antigens generated during tumor treatment to stimulate a cancer patient's immune system, has become a potential field in cancer immunotherapy. However, due to the immunosuppressive tumor microenvironment (ITME), the generation of tumor antigens is always mild and not sufficient. Tumor-resident intracellular bacteria have been identified as a complete tumor microenvironment component to contribute to creating ITME.
View Article and Find Full Text PDFACS Nano
January 2025
Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China.
Immunogenic cell death (ICD) of tumor cells, which is characterized by releasing immunostimulatory "find me" and "eat me" signals, expressing proinflammatory cytokines and providing personalized and broad-spectrum tumor antigens draws increasing attention in developing a tumor vaccine. In this study, we aimed to investigate whether the influenza virus (IAV) is efficient enough to induce ICD in tumor cells and an extra modification of IAV components such as hemeagglutinin (HA) will be helpful for the ICD-induced cells to elicit robust antitumor effects; in addition, to evaluate whether the membrane-engineering polylactic coglycolic acid nanoparticles (PLGA NPs) simulating ICD immune stimulation mechanisms hold the potential to be a promising vaccine candidate, a mouse melanoma cell line (B16-F10 cell) was infected with IAV rescued by the reverse genetic system, and the prepared cells and membrane-modified PLGA NPs were used separately to immunize the melanoma-bearing mice. IAV-infected tumor cells exhibit dying status, releasing high mobility group box-1 (HMGB1) and adenosine triphosphate (ATP), and exposing calreticulin (CRT), IAV hemeagglutinin (HA), and tumor antigens like tyrosinase-related protein 2 (TRP2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!