Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A series of novel myrsinane-type Euphorbia diterpene derivatives (1-37) were synthesized from the abundant natural lathyrane-type Euphorbia factor L, using a multi-step chemical process guided by a bioinspired skeleton conversion strategy, with the aim of discovering potential anti-Alzheimer's disease (AD) bioactive lead compounds. The synthesis process involved a concise reductive olefin coupling reaction through an intramolecular Michael addition with a free radical, followed by a visible-light-triggered regioselective cyclopropane ring-opening. The cholinesterase inhibitory and neuroprotective activities of the synthesized myrsinane derivatives were evaluated. Most of the compounds showed moderate to strong potency, highlighting the importance of ester groups in Euphorbia diterpene. In particular, derivative 37 displayed the most potent acetylcholinesterase (AChE) inhibition, with an IC value of 8.3 μM, surpassing that of the positive control, tacrine. Additionally, 37 also showed excellent neuroprotective effect against HO-induced injury in SH-SY5Y cells, with a cell viability rate of 124.2% at 50 μM, which was significantly higher than that of the model group (viability rate 52.1%). Molecular docking, reactive oxygen species (ROS) analysis, immunofluorescence, and immunoblotting were performed to investigate the mechanism of action of myrsinane derivative 37. The results indicated that derivative 37 may be a promising myrsinane-type multi-functional lead compound for the treatment of Alzheimer's disease. Furthermore, a preliminary SAR analysis was performed to study the acetylcholinesterase inhibitory and neuroprotective activities of these diterpenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2023.106595 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!