Two UDP-glycosyltransferases from Panax vienamensis var. fuscidiscus involved in ocotillol-type ginsenoside MR2 (majonside-R2) biosynthesis were identified. PvfUGT1 and PvfUGT2 sequentially catalyzes 20S,24S-Protopanxatriol Oxide II and 20S,24R-Protopanxatriol Oxide I to pseudoginsenoside RT4/RT5 and RT4/RT5 to 20S, 24S-MR2/20S, 24S-MR2. Ocotilol type saponin MR2 (majonside-R2) is the main active component of Panax vietnamensis var. fuscidiscus (commonly known as 'jinping ginseng') and is well known for its diverse pharmacological activities. The use of MR2 in the pharmaceutical industry currently depends on its extraction from Panax species. Metabolic engineering provides an opportunity to produce high-value MR2 by expressing it in heterologous hosts. However, the metabolic pathways of MR2 remain enigmatic, and the two-step glycosylation involved in MR2 biosynthesis has not been reported. In this study, we used quantitative real-time PCR to investigate the regulation of the entire ginsenoside pathway by MeJA (methyl jasmonate), which facilitated our pathway elucidation. We found six candidate glycosyltransferases by comparing transcriptome analysis and network co-expression analysis. In addition, we identified two UGTs (PvfUGT1 and PvfUGT2) through in vitro enzymatic reactions involved in the biosynthesis of MR2 which were not reported in previous studies. Our results show that PvfUGT1 can transfer UDP-glucose to the C6-OH of 20S, 24S-protopanaxatriol oxide II and 20S, 24R-protopanaxatriol oxide I to form pseudoginsenoside RT4 and pseudoginsenoside RT5, respectively. PvfUGT2 can transfer UDP-xylose to pseudoginsenoside RT4 and pseudoginsenoside RT5 to form 20S, 24S-MR2 and 20S, 24S-MR2. Our study paves the way for elucidating the biosynthesis of MR2 and producing MR2 by synthetic biological methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-023-04143-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!