Based on the composite pollution of atmospheric microbial aerosol, this paper selects the calcite/bacteria complex as the research object which was prepared by calcite particles and two common strains of bacteria (Escherichia coli, Staphylococcus aureus) in the solution system. The morphology, particle size, surface potential, and surface groups of the complex were explored by modern analysis and testing methods, with an emphasis on the interfacial interaction between calcite and bacteria. The SEM, TEM, and CLSM results showed that the morphology of the complex could be divided into three types: bacteria adhering to the surface or edge of micro-CaCO, bacteria aggregating with nano-CaCO, and single nano-CaCO wrapping bacteria. The complex's particle size was about 2.07 ~ 192.4 times larger than the original mineral particles, and the nano-CaCO/bacteria complex's particle size variation was caused by the fact that nano-CaCO has agglomeration in solution. The surface potential of the micro-CaCO/bacteria complex (isoelectric point pH = 3.0) lies between micro-CaCO and bacteria, while the surface potential of the nano-CaCO/bacteria complex (isoelectric point pH = 2.0) approaches the nano-CaCO. The complex's surface groups were based primarily on the infrared characteristics of calcite particles, accompanied by the infrared characteristics of bacteria, displaying the interfacial interaction from the protein, polysaccharides, and phosphodiester groups of bacteria. The interfacial action of the micro-CaCO/bacteria complex is mainly driven by electrostatic attraction and hydrogen bonding force, while the nano-CaCO/bacteria complex is guided by surface complexation and hydrogen bonding force. The increase in the β-fold/α-helix ratio of the calcite/S. aureus complex indicated that the secondary structure of bacterial surface proteins was more stable and the hydrogen bond effect was strong than the calcite/E. coli complex. The findings are expected to provide basic data for the mechanism research of atmospheric composite particles closer to the real environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182550 | PMC |
http://dx.doi.org/10.1007/s11356-023-27522-z | DOI Listing |
Langmuir
January 2025
Hubei Key Laboratory of Oil and Gas Exploration and Development Theory and Technology (China University of Geosciences), Wuhan 430074, China.
The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFLangmuir
January 2025
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China.
Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.
Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.
View Article and Find Full Text PDFMetal oxides are promising catalysts for small molecule hydrogen chemistries, mediated by interfacial proton-coupled electron transfer (PCET) processes. Engineering the mechanism of PCET has been shown to control the selectivity of reduced products, providing an additional route for improving reductive catalysis with metal oxides. In this work, we present kinetic resolution of the rate determining proton-transfer step of PCET to a titanium-doped POV, TiVO(OCH) with 9,10-dihydrophenazine by monitoring the loss of the cationic radical intermediate using stopped-flow analysis.
View Article and Find Full Text PDFAdv Mater
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!