Hydrodynamic cavitation (HC) was a kind of advanced oxidation mode. There were defects in the common HC devices, such as high energy consumption, low efficiency, and easy plugging. In order to effectively utilize HC, it was urgent to research new HC devices and used them together with other traditional water treatment methods. Ozone was widely used as a water treatment agent that does not produce harmful by-products. Sodium hypochlorite (NaClO) was efficient and cheap, but too much chlorine will be harmful to water. The combination of ozone and NaClO with the HC device of propeller orifice plate can improve the dissolution and utilization rate of ozone in wastewater, reduce the use of NaClO, and avoid the generation of residual chlorine. The degradation rate reached 99.9% when the mole ratio γ of NaClO to ammonia nitrogen (NH-N) was 1.5 and the residual chlorine was near zero. As for the degradation rate of NH-N or COD of actual river water and real wastewater after biological treatment, the ideal mole ratio γ was also 1.5 and the ideal O flow rates were 1.0 L/min. The combined method has been preliminarily applied to actual water treatment and was expected to be used in more and more scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-27504-1 | DOI Listing |
ACS Nano
January 2025
Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
The chemical structure and photoredox properties of carbon dots () are not yet fully understood. However, it has been reported that, by carefully choosing the starting materials and tuning their synthesis conditions, it is possible to obtain with different chemical structures and therefore different photocatalytic performance. For this work, a family of different was synthesized in Milli-Q water a microwave-assisted protocol, using citric acid and urea as precursors.
View Article and Find Full Text PDFPhotobiomodul Photomed Laser Surg
January 2025
School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
With the continuous development of Terahertz technology and its high sensitivity to water, Terahertz technology has been widely applied in various research areas within the field of biomedicine, such as research onskin wounds and burns, demonstrating numerous advantages and potential. The aim of this study is to summarize and conclude the current research status of Terahertz radiation in skin wounds, burns, and melanoma. Additionally, it seeks toreveal the development status of Terahertz in skin wound models and analyze the short comings of Terahertz in detecting such models at the present stage.
View Article and Find Full Text PDFFolia Microbiol (Praha)
January 2025
Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Chemistry, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia.
Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China.
In this study, an efficient membrane composed of polysulfone and graphene oxide was developed and evaluated for its efficacy in chromium adsorption. Characterization of the synthesized membrane involved comprehensive analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) to assess its structural properties. Subsequently, the membrane's performance in removing chromium from aqueous solutions was scrutinized, considering key operational parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!