Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Infants born to mothers with chorioamnionitis (CAM) are at increased risk of developing adverse neurodevelopmental disorders in later life. However, clinical magnetic resonance imaging (MRI) studies examining brain injuries and neuroanatomical alterations attributed to CAM have yielded inconsistent results. We aimed to determine whether exposure to histological CAM in utero leads to brain injuries and alterations in the neuroanatomy of preterm infants using 3.0- Tesla MRI at term-equivalent age.
Methods: A total of 58 preterm infants born before 34 weeks of gestation at Nagoya University Hospital between 2010 and 2018 were eligible for this study (CAM group, n = 21; non-CAM group, n = 37). Brain injuries and abnormalities were assessed using the Kidokoro Global Brain Abnormality Scoring system. Gray matter, white matter, and subcortical gray matter (thalamus, caudate nucleus, putamen, pallidum, hippocampus, amygdala, and nucleus accumbens) volumes were evaluated using segmentation tools (SPM12 and Infant FreeSurfer).
Results: The Kidokoro scores for each category and severity in the CAM group were comparable to those observed in the non-CAM group. White matter volume was significantly smaller in the CAM group after adjusting for covariates (postmenstrual age at MRI, infant sex, and gestational age) (p = 0.007), whereas gray matter volume was not significantly different. Multiple linear regression analyses revealed significantly smaller volumes in the bilateral pallidums (right, p = 0.045; left, p = 0.038) and nucleus accumbens (right, p = 0.030; left, p = 0.004) after adjusting for covariates.
Conclusions: Preterm infants born to mothers with histological CAM showed smaller volumes in white matter, pallidum, and nucleus accumbens at term-equivalent age.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00404-023-07064-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!