Industrial food processes are monitored to ensure that food is being produced with good quality, yield, and productivity. For developing innovative real-time monitoring and control strategies, real-time sensors are needed that can continuously report chemical and biochemical data of the manufacturing process. Here, we describe a generalizable methodology to develop affinity-based biosensors for the continuous monitoring of small molecules in industrial food processes. Phage-display antibody fragments were developed for the measurement of small molecules, as exemplified with the measurement of glycoalkaloids (GAs) in potato fruit juice. The recombinant antibodies were selected for use in a competition-based biosensor with single-molecule resolution, called biosensing by particle motion, using assay architectures with free particles as well as tethered particles. The resulting sensor measures GAs in the micromolar range, is reversible, has a measurement response time below 5 min, and enables continuous monitoring of GAs in protein-rich solutions for more than 20 h with concentration measurement errors below 15%. The demonstrated biosensor gives the perspective to enable a variety of monitoring and control strategies based on continuous measurement of small molecules in industrial food processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209984PMC
http://dx.doi.org/10.1021/acs.analchem.3c00628DOI Listing

Publication Analysis

Top Keywords

industrial food
16
food processes
16
small molecules
12
monitoring control
8
control strategies
8
continuous monitoring
8
molecules industrial
8
measurement small
8
monitoring
5
food
5

Similar Publications

Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation.

View Article and Find Full Text PDF

A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).

View Article and Find Full Text PDF

Aptamer-Driven Multifunctional Nanoplatform for Near-Infrared Fluorescence Imaging and Rapid Inactivation of .

Anal Chem

January 2025

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

() is a prominent pathogen responsible for intestinal infections, primarily transmitted through contaminated food and water. This underscores the critical need for precise and biocompatible technologies enabling early detection and intervention of bacterial colonization . Herein, a multifunctional nanoplatform (IR808-Au@ZIF-90-Apt) was designed, utilizing an -specific aptamer to initiate cascade responses triggered by intracellular ATP and GSH.

View Article and Find Full Text PDF

Fermentation is crucial for inducing desirable flavor and aroma profiles in cocoa products. This research focused on identifying microbial strains isolated from spontaneous cocoa fermentation in Hainan through 16S and Internal Transcribed Spacer (ITS) sequencing. Pectinase activity was screened, and metabolic dynamics of sugars and organic acids were analyzed using high-performance liquid chromatography.

View Article and Find Full Text PDF

Recent advances in research on biomass-based food packaging film materials.

Compr Rev Food Sci Food Saf

January 2025

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China.

Although traditional petroleum-based packaging materials pose environmental problems, biodegradable packaging materials have attracted extensive attention from research and industry for their environmentally friendly properties. Bio-based films, as an alternative to petroleum-based packaging films, demonstrate their significant advantages in terms of environmental friendliness and resource sustainability. This paper provides an insight into the development of biomass food packaging films such as cellulose, starch, chitosan, and gelatine, including their properties, methods of preparation (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!