Striking antibody evasion by emerging circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants drives the identification of broadly neutralizing antibodies (bNAbs). However, how a bNAb acquires increased neutralization breadth during antibody evolution is still elusive. Here, we identify a clonally related antibody family from a convalescent individual. One of the members, XG005, exhibits potent and broad neutralizing activities against SARS-CoV-2 variants, while the other members show significant reductions in neutralization breadth and potency, especially against the Omicron sublineages. Structural analysis visualizing the XG005-Omicron spike binding interface reveals how crucial somatic mutations endow XG005 with greater neutralization potency and breadth. A single administration of XG005 with extended half-life, reduced antibody-dependent enhancement (ADE) effect, and increased antibody product quality exhibits a high therapeutic efficacy in BA.2- and BA.5-challenged mice. Our results provide a natural example to show the importance of somatic hypermutation during antibody evolution for SARS-CoV-2 neutralization breadth and potency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154539 | PMC |
http://dx.doi.org/10.1016/j.celrep.2023.112503 | DOI Listing |
Clin Microbiol Rev
January 2025
Department of Medicine, Division of Pulmonary/Allergy/Critical Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
SUMMARY (the "pneumococcus") is a significant human pathogen. The key determinant of pneumococcal fitness and virulence is its ability to produce a protective polysaccharide (PS) capsule, and anti-capsule antibodies mediate serotype-specific opsonophagocytic killing of bacteria. Notably, immunization with pneumococcal conjugate vaccines (PCVs) has effectively reduced the burden of disease caused by serotypes included in vaccines but has also spurred a relative upsurge in the prevalence of non-vaccine serotypes.
View Article and Find Full Text PDFNat Immunol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
Although antibody escape is observed in emerging severe acute respiratory syndrome coronavirus 2 variants, T cell escape, especially after the global circulation of BA.2.86/JN.
View Article and Find Full Text PDFIndian J Nephrol
July 2024
Department of Nephrology, Asian Institute of Nephrology and Urology, Dilsukhnagar Hyderabad, India.
Multiple myeloma (MM) represents a difficult-to-treat plasma cell malignancy and the second most common hematologic malignancy in adults, significantly impacting kidney function. The spectrum of kidney involvement in MM is broad, encompassing electrolyte imbalances, tubular injury, and even rare glomerular diseases. The evolution of MM treatment modalities has led to notable improvements in the long-term survival of patients experiencing kidney-related complications.
View Article and Find Full Text PDFTranspl Int
January 2025
Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
An overview is provided of the evolution of strategies towards xenotransplantation during the past almost 40 years, focusing on advances in gene-editing of the organ-source pigs, pre-transplant treatment of the recipient, immunosuppressive protocols, and adjunctive therapy. Despite initial challenges, including hyperacute rejection resulting from natural (preformed) antibody binding and complement activation, significant progress has been made through gene editing of the organ-source pigs and refinement of immunosuppressive regimens. Major steps were the identification and deletion of expression of the three known glycan xenoantigens on pig vascular endothelial cells, the transgenic expression of human "protective" proteins, e.
View Article and Find Full Text PDFInfluenza Other Respir Viruses
January 2025
Área de Investigación en Vacunas, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain.
SARS-CoV-2, which originated in China in late 2019, quickly fueled the global COVID-19 pandemic, profoundly impacting health and the economy worldwide. A series of vaccines, mostly based on the full SARS-CoV-2 Spike protein, were rapidly developed, showing excellent humoral and cellular responses and high efficacy against both symptomatic infection and severe disease. However, viral evolution and the waning humoral neutralizing responses strongly challenged vaccine long term effectiveness, mainly against symptomatic infection, making necessary a strategy of repeated and updated booster shots.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!